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ABSTRACT
Large volumes of event data are becoming increasingly avail-
able in a wide variety of applications, such as healthcare an-
alytics, smart cities and social network analysis. The precise
time interval or the exact distance between two events car-
ries a great deal of information about the dynamics of the
underlying systems. These characteristics make such data
fundamentally different from independently and identically
distributed data and time-series data where time and space
are treated as indexes rather than random variables. Marked
temporal point processes are the mathematical framework
for modeling event data with covariates. However, typical
point process models often make strong assumptions about
the generative processes of the event data, which may or
may not reflect the reality, and the specifically fixed para-
metric assumptions also have restricted the expressive power
of the respective processes. Can we obtain a more expres-
sive model of marked temporal point processes? How can
we learn such a model from massive data?

In this paper, we propose the Recurrent Marked Temporal
Point Process (RMTPP) to simultaneously model the event
timings and the markers. The key idea of our approach is
to view the intensity function of a temporal point process
as a nonlinear function of the history, and use a recurrent
neural network to automatically learn a representation of
influences from the event history. We develop an efficient
stochastic gradient algorithm for learning the model param-
eters which can readily scale up to millions of events. Using
both synthetic and real world datasets, we show that, in
the case where the true models have parametric specifica-
tions, RMTPP can learn the dynamics of such models with-
out the need to know the actual parametric forms; and in
the case where the true models are unknown, RMTPP can
also learn the dynamics and achieve better predictive per-
formance than other parametric alternatives based on par-
ticular prior assumptions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939875

9:00 AM 

10:30 AM 

11:05 AM 

What’s next ? 

Figure 1: Given the trace of past locations and time, can we
predict the location and time of the next stop?
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1. INTRODUCTION
Event data with marker information can be produced from

social activities, to financial transactions, to electronic health
records, which contains rich information about what type
of event is happening between which entities by when and
where. For instance, people might visit various places at dif-
ferent moments of a day. Algorithmic trading systems buy
and sell large volume of stocks within short-time frames. Pa-
tients regularly go to the clinic with a longitudinal data of
diagnoses about their concerned diseases.

Although the aforementioned situations come from a broad
range of domains, we are interested in a commonly encoun-
tered question: based on the observed sequence of events,
can we predict what kind of event will take place at what
time in the future? Accurately predicting the type and the
timing of the next event will have many interesting appli-
cations. For mainstream personal assistants, shown in Fig-
ure 1, since people tend to visit different places specific to
the temporal/spatial contexts, successfully predicting their
next destinations at the most likely time will make such ser-
vices more relevant and usable. In stock market, accurately
forecasting when to sell or buy a particular stock means
critical business success. For modern healthcare, patients
may have several diseases that have complicated dependen-
cies on each other. Accurately estimating when a clinical
event might occur can effectively facilitate patient-specific
care and prevention to reduce the potential future risks.

Existing studies in literature attempt to approach this
problem mainly in two ways: first, classic varying-order
Markov models [4] formulate the problem as a discrete-time
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sequence prediction task. Based on the observed sequence
of states, they can predict the most likely state the process
will evolve into on the next step. As a result, one limit of
the family of classic Markov models is that it assumes the
process proceeds by unit time-steps, so it cannot capture the
heterogeneity of the time to predict the timing of the next
event. Furthermore, when the number of states is large,
Markov model usually cannot capture long dependency on
the history since the overall state-space will grow exponen-
tially in the number of time steps considered. Semi-Markov
model [26] can model the continuous time-interval between
two successive states to some extent by assuming the inter-
vals have very simple distributions, but it still has the same
state-space explosion issue when the order grows.

Second, marked temporal point processes and intensity
functions are a more general mathematical framework for
modeling such event data. For example, in seismology, marked
temporal point processes have originally been widely used
for modeling earthquakes and aftershocks [20, 21, 31]. Each
earthquake can be represented as a point in the temporal-
spatial space, and seismologists have proposed different for-
mulations to capture the randomness of these events. In the
financial area, temporal point processes are active research
topics of econometrics, which often leads to many simple in-
terpretations of the complex dynamics of modern electronic
markets [2, 3].

However, typical point process models, such as the Hawkes
processes [20], the autoregressive conditional duration pro-
cesses [12], are making specific assumptions about the func-
tional forms of the generative processes, which may or may
not reflect the reality, and thus the respective fixed sim-
ple parametric representations may restrict the expressive
power of these models. How can we obtain a more expres-
sive model of marked temporal point processes, and learn
such a model from large volume of data? In this paper, we
propose a novel marked temporal point process, referred to
as the Recurrent Marked Temporal Point Process, to simul-
taneously model the event timings and markers. The key
idea of our approach is to view the intensity function of a
temporal point process as a nonlinear function of the his-
tory of the process, and parameterize the function using a
recurrent neural network. More specifically, our work makes
the following contributions:

• We propose a novel marked point process to jointly model
the time and the marker information by learning a gen-
eral representation of the nonlinear dependency over the
history based on recurrent neural networks. Using our
model, event history is embedded into a compact vector
representation which can be used for predicting the next
event time and marker type.
• We point out that the proposed Recurrent Marked Tem-

poral Point Process establishes a previously unexplored
connection between recurrent neural networks and point
processes, which has implications beyond temporal-spatial
settings by incorporating more rich contextual informa-
tion and features.
• We conduct large-scale experiments on both synthetic and

real-world datasets across a wide range of domains to show
that our model has consistently better performance for
predicting both the event type and timing compared to
alternative competitors.

2. PROBLEM DEFINITION
The input data is a set of sequences C =

{
S1,S2, . . .

}
.

Each Si =
(
(ti1, y

i
1), (ti2, y

i
2), . . .

)
is a sequence of pairs (tij , y

i
j)

where tij is the time when the event of type (or marker) yij
has occurred to the entity i, and tij < tij+1. Depending on
specific applications, the entity and the event type can have
different meanings. For example, in transportation, Si can
be a trace of time and location pairs for a taxi i where tij
is the time when the taxi picks up or drops off customers
in the neighborhood yij . In financial transactions, Si can be
a sequence of time and action pairs for a particular stock i
where tij is the time when a transaction of selling (yij = 0) or

buying (yij = 1) has occurred. In electronic health records,

Si is a series of clinical events for patient i where tij is the

time when the patient is diagnosed with the disease yij . De-
spite that these applications emerge from a diverse range of
domains, we want to build models which are able to:
• Predict the next event pair (tin+1, y

i
n+1) given a sequence

of past events for entity i;
• Evaluate the likelihood of a given sequence of events;
• Simulate a new sequence of events based on the learned

parameters of the model.

3. RELATED WORK
Temporal point processes [6] are mathematical abstrac-

tions for many different phenomena across a wide range of
domains. In seismology, marked temporal point processes
have originally been widely used for modeling earthquakes
and aftershocks [20, 19, 21, 31]. In computational finance,
temporal point processes are very active research topics in
econometrics [2, 3]. In sociology, temporal-spatial point pro-
cesses have been used to model networks of criminals [35]. In
human activity modeling, Poisson Process and its variants,
have been used to model the inter-event durations of human
activities [29, 15]. More recently, the self-excitation point
process [20], has become an ongoing hot topic for modeling
the latent dynamics of information diffusion [16, 9, 10, 8, 40,
14, 22], online-user engagement [13], news-feed streams [7],
and context-aware recommendations [11].

A major limitation of these existing studies is that they
often draw various parametric assumptions about the latent
dynamics governing the generation of the observed point
patterns. In contrast, in this work, we seek to propose a
model that can learn a general and efficient representation of
the underlying dynamics from the event history without as-
suming a fixed parametric forms in advance. The advantage
is that the proposed model can be more flexible to be au-
tomatically adapted to the data. We compare the proposed
RMTPP with many other processes of specific parametric
forms in Section 6 to demonstrate the superb robustness of
RMTPP to model misspecification.

4. MARKED TEMPORAL POINT PROCESS
Marked temporal point process is a powerful mathemati-

cal tool to model the latent mechanisms governing the ob-
served random event patterns along time. Since the occur-
rence of an event may be triggered by what happened in
the past, we can essentially specify models for the timing
of the next event given what we have already known so far.
More formally, a marked temporal point process is a random
process of which the realization consists of a list of discrete
events localized in time, {tj , yj}, with the timing tj ∈ R+,



the marker yj ∈ Y and j ∈ Z+ . Let the history Ht be
the list of event time and marker pairs up to the time t.
The length dj+1 = tj+1 − tj of the time interval between
neighboring successive events tj and tj+1 is referred to as
the inter-event duration.

Given the history of past events, we can explicitly spec-
ify the conditional density function that the next event will
happen at time t with type y as f∗(t, y) = f(t, y|Ht) where
f∗(t, y) emphasizes that this density is conditional on the
history. By applying the chaining rule, we can derive the
joint likelihood of observing a sequence as the following:

f
(
{(tj , yj)}nj=1

)
=
∏
j

f(tj , yj |Ht) =
∏
j

f∗(tj , yj) (1)

One can design many forms for f∗(tj , yj). However, in prac-
tice, people typically choose very simple factorized formu-
lations like f(tj , yj |Ht) = f(yj)f(tj | . . . , tj−2, tj−1) due to
the excessive complications caused by jointly and explicitly
modeling the timing and the marker information. One can
think of f(yj) as a multinomial distribution when yj can
only take finite number of values and is totally independent
on the history. f(tj | . . . , tj−2, tj−1) is the conditional den-
sity of the event occurring at the time tj given the timing
sequence of past events. However, note that f∗(tj) cannot
capture the influence of past markers.

4.1 Parametrizations
The temporal information in a marked point process can

be well captured by a typical temporal point process. An
important way to characterize temporal point processes is
via the conditional intensity function — the stochastic model
for the next event time given all previous events. Within a
small window [t, t + dt), λ∗(t)dt is the probability for the
occurrence of a new event given the history Ht:

λ∗(t)dt = P {event in [t, t+ dt)|Ht} . (2)

The ∗ notation reminds us that the function depends on the
history. Given the conditional density function f∗(t), the
conditional intensity function can be specified as:

λ∗(t)dt =
f∗(t)dt

S∗(t)
=

f∗(t)dt

1− F ∗(t) , (3)

where F ∗(t) is the cumulative probability that a new event
will happen before time t since the last event time tn, and

S∗(t) = exp
(
−
∫ t
tn
λ∗(τ)dτ

)
is the respective probability

that no new event has ever happened up to time t since tn.
As a consequence, the conditional density function can be
alternatively specified by

f∗(t) = λ∗(t) exp

(
−
∫ t

tn

λ∗(τ)dτ

)
. (4)

Particular functional forms of the conditional intensity
function λ∗(t) are often designed to capture the phenom-
ena of interests [1]. In the following, we review a few rep-
resentative examples of typical point processes where the
conditional intensity has particularly specified parametric
forms.

Poisson process [28]. The homogeneous Poisson pro-
cess is the simplest point process. The inter-event times
are independent and identically distributed random vari-
ables conforming to the exponential distribution. The con-
ditional intensity function is assumed to be independent
of the history Ht and keeping constant over time, i.e.,
λ∗(t) = λ0 > 0. For a more general inhomogeneous pois-

son process, the intensity is also assumed to be indepen-
dent of the history Ht but it can be a function varying over
time, i.e., λ∗(t) = g(t) > 0.

Hawkes process [20]. A Hawkes process captures the
mutual excitation phenomenon among events with the con-
ditional intensity being defined as

λ∗(t) = γ0 + α
∑
tj<t

γ(t, tj), (5)

where γ(t, tj) > 0 is the triggering kernel capturing tem-
poral dependencies, γ0 > 0 is a baseline intensity indepen-
dent of the history and the summation of kernel terms is
history dependent and a stochastic process by itself. The
kernel function can be chosen in advance, e.g., γ(t, tj) =
exp(−β (t− tj)) or γ(t, tj) = I[t > tj ], or directly learned
from data. A distinctive feature of the Hawkes process is
that the occurrence of each historical event increases the in-
tensity by a certain amount. Since the intensity function
depends on the history up to time t, the Hawkes process is
essentially a conditional Poisson process (or doubly stochas-
tic Poisson process [27]) in the sense that conditioned on the
history Ht, the Hawkes process is a Poisson process formed
by the superposition of a background homogeneous Poisson
process with the intensity γ0 and a set of inhomogeneous
Poisson processes with the intensity γ(t, tj). However, be-
cause the events in a past interval can affect the occurrence
of the events in later intervals, the Hawkes process in general
is more expressive than a Poisson process.

Self-correcting process [25]. In contrast to the Hawkes
process, the self-correcting process seeks to produce regular
point patterns with the conditional intensity function

λ∗(t) = exp

(
µt−

∑
ti<t

α

)
, (6)

where µ > 0, α > 0. The intuition is that while the intensity
increases steadily, every time when a new event appears, it is
decreased by multiplying a constant e−α < 1, so the chance
of new points decreases after an event has occurred recently.

Autoregressive Conditional Duration process [12].
An alternative way of conditional intensity parametrization
is to capture the dependency between inter-event durations.
Let di = ti − ti−1. The expectation for di is given by
ψi = E(di| . . . , di−2, di−1). The simplest form assumes that
di = ψiεi where εi is independently and identically dis-
tributed exponential variables with expectation one. As
a consequence, the conditional intensity has the following
form:

λ∗(t) = ψ−1
N(t), (7)

where ψi = γ0 +
∑m
j=0 αjdi−j to capture the influences from

the most recent m durations, and N(t) is the total number
of events up to t.

4.2 Major Limitations
Curse of Model Misspecification. All these different

parameterizations of the conditional intensity function seek
to capture and represent certain forms of dependency on the
history in different ways: Poisson process makes the assump-
tion that the duration is stationary; Hawkes process assumes
that the influences from past events are linearly additive to-
wards the current event; Self-correcting process specifies a
non-linear dependency over these past events; and autore-
gressive conditional duration model imposes a linear struc-



ture between successive inter-event durations. These differ-
ent parameterizations encode our prior knowledge about the
latent dynamics we try to model. In practice, however, the
true model is never known. Thus, we have to try different
specifications for λ∗(t) to tune the predictive performance
and most often we can expect to suffer from certain errors
caused by the model misspecification.

Marker Generation. Furthermore, it is quite often that
we have additional information (or covariates) associated
with each event like the markers. For instance, the marker
of a NYC taxi can be the neighborhood-name of the place
where it picks up (or drops off) passengers; the marker of
each financial transaction can be the action of buying (or
selling); and the marker of a clinical event can be the diag-
nosis of the major disease. Classic temporal point processes
can be extended to capture the marker information mainly
in the following two ways: first, the marker is directly incor-
porated into the intensity function; second, each marker can
be regarded as an independent dimension to have a multi-
dimensional temporal point process. In terms of the for-
mer approach, we still need to specify a proper form for the
conditional intensity function. Moreover, due to the extra
complexity of the function induced by the markers, people
normally make strong assumptions that the marker is inde-
pendent on the history [33], which greatly reduces the flex-
ibility of the model. With respect to the latter method, it
is very often to have large number of markers, which results
in a sparsity problem associated with each dimension where
only very few events can happen.

5. RECURRENT MARKED TEMPORAL
POINT PROCESS

Each parametric form of the conditional intensity function
determines the temporal characteristics of a family of point
processes. However, it will be hard to correctly decide which
form to use without any sufficient prior knowledge in order
to take into account both the marker and the timing infor-
mation. To tackle this challenge, in this section, we propose
a unified model capable of modeling a general nonlinear de-
pendency over the history of both the event timing and the
marker information.

5.1 Model Formulation
By carefully investigating the various forms of the condi-

tional intensity function (5), (6), and (7), we can observe
that they are inherently different representations and real-
izations of various kinds of dependency structures over the
past events. Inspired by this critical insight, we seek to
learn a general representation to approximate the unknown
dependency structure over the history.

Recurrent Neural Network (RNN) is a feedforward neural
network structure where additional edges, referred to as the
recurrent edges, are added such that the outputs from the
hidden units at the current time step are fed into them again
as the future inputs at the next time step. In consequence,
the same feedforward neural network structure is replicated
at each time step, and the recurrent edges connect the hid-
den units of the network replicates at adjacent time steps
together along time, that is, the hidden units with recur-
rent edges not only receive the input from the current data
sample but also from the hidden units in the last time step.
This feedback mechanism creates an internal state of the

time

dj+1 = tj+1 � tj

(tj+1, yj+1)

hidden hj+1

f⇤(tj+1) = f(dj+1|hj)(tj , yj)

hidden hjhj�1

� log f⇤(tj+1)� log P (yj+1|hj) � log P (yj+2|hj+1) � log f⇤(tj+2)

Figure 2: Illustration of Recurrent Marked Temporal Point
Process. For each event with the timing tj and the marker
yj , we treat the pair (tj , yj) as the input to a recurrent neural
network where the embedding hj up to the time tj learns a
general representation of a nonlinear dependency over both
the timing and the marker information from past events.
Note that the solid diamond and the circle on the timeline
indicate two events of different types yj 6= yj+1.

network to memorize the influence of each past data sam-
ple. In theory, finite-sized recurrent neural networks with
sigmoidal activation units can simulate a universal Turing
machine [36], which is able to perform an extremely rich
family of computations. In practice, RNN has been shown
to be a powerful tool for general purpose sequence model-
ing. For instance, in Natural Language Processing, recurrent
neural network has state-of-the-arts predictive performance
for sequence-to-sequence translations [24], image caption-
ing [38], handwriting recognition [18]. It has also been used
for discrete-time series data prediction [30, 39, 34](treat time
as discrete indices) for a long time.

Our key idea is to let the RNN (or its modern variant
LSTM [23], GRU [5], etc.) model the nonlinear dependency
over both of the markers and the timings from past events.
As shown in Figure 2, for the event occurring at the time
tj of type yj , the pair (tj , yj) is fed as the input into a re-
current neural network unfolded up to the j + 1-th event.
The embedding hj−1 represents the memory of the influence
from the timings and the markers of past events. The neu-
ral network updates hj−1 to hj by taking into account the
effect of the current event (tj , yj). Since now hj represents
the influence of the history up to the j-th event, the con-
ditional density for the next event timing can be naturally
represented as

f∗(tj+1) = f(tj+1|Ht) = f(tj+1|hj) = f(dj+1|hj), (8)

where dj+1 = tj+1 − tj . As a consequence, we can depend
on hj to make predictions to the timing t̂j+1 and the type
ŷj+1 of the next event.

The advantage of this formulation is that we explicitly
embed the event history into a latent vector space, and by
the elegant relation (4), we are now able to capture a general
form of the conditional intensity function λ∗(t) without the
need of specifying a fixed parametric specification for the
dependency structure over the history. Figure 3 presents
the overall architect of the proposed RMTPP. Given a se-
quence of events S =

(
(tj , yj)

n
j=1

)
, we design an RNN which

computes a sequence of hidden units {hj} by iterating the
following components.

Input Layer. At the j-th event, the input layer first
projects the sparse one-hot vector representation of the marker
yj into a latent space. We add an embedding layer with the
weight matrix Wem to achieve a more compact and efficient
representation yj = W>

emyj + bem, where bem is the bias.
We learn Wem and bem while we train the network. In
addition, for the timing input tj , we can extract the associ-



Timing tj Marker yj

� log f⇤(tj+1)

hidden hj

� log P (yj+1|hj)

W t embedding yj

Wem

W y

W h

V y

Recurrent Layer

Input Layer

Output Layer
vt

Figure 3: Architect of RMTPP. For a given sequence S =(
(tj , yj)

n
j=1

)
, at the j-th event, the marker yj is first em-

bedded into a latent space. Then, the embedded vector and
the temporal features are fed into the recurrent layer. The
recurrent layer learns a representation that summaries the
nonlinear dependency over the previous events. Based on
the learned representation hj , it outputs the prediction for
the next marker ŷj+1 and timing t̂j+1 to calculate the re-
spective loss functions.

ated temporal features tj (e.g., like the inter-event duration
dj = tj − tj−1).

Hidden Layer. We update the hidden vector after re-
ceiving the current input and the memory hj−1 from the
past. In RNN, we have

hj = max
{
W yyj + W ttj + W hhj−1 + bh, 0

}
. (9)

Marker Generation. Given the learned representation
hj , we model the marker generation with a multinomial dis-
tribution by

P (yj+1 = k|hj) =
exp

(
V y
k,:hj + byk

)
∑K
k=1 exp

(
V y
k,:hj + byk

) , (10)

where K is the number of markers, and V y
k,: is the k-th row

of matrix V y.
Conditional Intensity. Based on hj , we can now for-

mulate the conditional intensity function by

λ∗(t) = exp

(
vt
> · hj︸ ︷︷ ︸
past

influence

+ wt(t− tj)︸ ︷︷ ︸
current

influence

+ bt︸︷︷︸
base

intensity

)
, (11)

where vt is a column vector, and wt, bt are scalars. More
specifically,

• The first term vt
> · hj represents the accumulative in-

fluence from the marker and the timing information of
the past events. Compared to the fixed parametric for-
mulations of (5), (6), and (7) for the past influence, we
now have a highly non-linear general specification of the
dependency over the history.
• The second term emphasizes the influence of the current

event j.
• The last term gives a base intensity level for the occur-

rence of the next event.
• The exponential function outside acts as a non-linear trans-

formation and guarantees that the intensity is positive.

By invoking the elegant relation between the conditional
intensity function and the conditional density function in (4),
we can derive the likelihood that the next event will occur

at the time t given the history by the following equation:

f∗(t) = λ∗(t) exp

(
−
∫ t

tj

λ∗(τ)dτ

)

= exp

{
vt
> · hj + wt(t− tj) + bt +

1

w
exp(vt

> · hj + bt)

− 1

w
exp(vt

> · hj + wt(t− tj) + bt)

}
. (12)

Then, we can estimate the timing for the next event using
the expectation

t̂j+1 =

∫ ∞
tj

t · f∗(t)dt. (13)

In general, the integration in (13) does not have analytic
solutions, so we can apply commonly used numerical in-
tegration techniques [32] for one-dimensional functions to
compute (13) instead.

Remark. Based on the hidden unit of RNN, we are able
to learn a unified representation of the dependency over the
history. In consequence, the direct formulation (11) of the
conditional intensity function λ∗(tj+1) captures both of the
information from past event timings and event markers. On
the other hand, since the prediction for the marker also
depends nonlinearly on the past timing information, this
may improve the performance of the classification task as
well when both of these two information are correlated with
each other. In fact, experiments on synthetic and real world
datasets in the following experimental section do verify such
mutual boosting phenomenon.

5.2 Parameter Learning
Given a collection of sequences C =

{
Si
}

, where Si =(
(tij , y

i
j)
ni
j=1

)
, we can learn the model by maximizing the joint

log-likelihood of observing C.

`({Si}) =
∑
i

∑
j

(
logP (yij+1|hj) + log f(dij+1|hj)

)
, (14)

We exploit the Back Propagation Through Time (BPTT) for
training RMTPP. Given the size of BPTT as b, we unroll
our model in Figure 3 by b steps. In each training iteration,
we take b consecutive samples {(tik, yik)j+bk=j} from a single
sequence, apply the feed-forward operation through the net-
work, and update the parameters with respect to the loss
function. After we unroll the model for b steps through time,
all the parameters are shared across these copies, and will be
updated sequentially in the back propagation stage. In our
algorithm framework1, we need both sparse (the marker yj)
and dense features at time tj . Meanwhile, the output is also
mixed of discrete markers and real-value time, which is then
fed into different loss functions including the cross-entropy of
the next predicted marker and the negative log-likelihood of
the next predicted event timing. Therefore, we build an effi-
cient and flexible platform2 particularly optimized for train-
ing general directed acyclic structured computational graph
(DAG). The backend is supported via CUDA and MKL for
GPU and CPU platform, respectively. In the end, we ap-
ply stochastic gradient descent (SGD) with mini-batch and
several other techniques of training neural networks [37].

1https://github.com/dunan/NeuralPointProcess
2https://github.com/Hanjun-Dai/graphnn



6. EXPERIMENT
We evaluate RMTPP in large-scale synthetic and real

world data. We compare it to several discrete-time and
continuous-time sequential models showing that RMTPP is
more robust to model misspecificationmisspecification than
these alternatives.

6.1 Baselines
To evaluate the predictive performance of forecasting mark-

ers, we compare with the following discrete-time models:
• Majority Prediction. This is also known as the 0-order

Markov Chain (MC-0), where at each time step, we al-
ways predict the most popular marker regardless of the
history. Most often, predicting the most popular type is
a strong heuristic.
• Markov Chain. We compare with Markov models with

varying orders from one to three, denoted as MC-1, MC-
2, and MC-3, respectively.
To show the effectiveness of predicting time, we compare

with the following continuous-time models:
• ACD. We fit a second-order autoregressive conditional

duration process with the intensity function given in (7).
• Homogeneous Poisson Process. The intensity func-

tion is a constant, which produces an estimate of the av-
erage inter-event gaps.
• Hawkes Process. We fit a self-excitation Hawkes pro-

cess with the intensity function in (5).
• Self-correcting Process. We fit a self-correcting pro-

cess with the intensity function in (6).
Finally, we compare with the Continuous-Time Markov

Chain (CTMC) model, which learns continuous transition
rates between two states (or markers). This model predicts
the next state with the earliest transition time, so it can
predict both the marker and the timing for the next event
jointly.

6.2 Synthetic Data
To show the robustness of RMTPP, we propose the fol-

lowing generative processes3:
Autoregressive Conditional Duration. The condi-

tional density function for the next duration dn conforms to
an exponential distribution with the expectation determined
by the past m subsequent durations in the following form,
which is denoted as ACD.

f(dn|Hn−1) = αn exp(−αnτn), αn =

(
µ0 + γ

m∑
i=1

dn−i

)−1

,

(15)

where µ0 is the base duration to generate the first event
starting from zero, d1 ∼ (µ0)−1 exp(−d1/µ0). We set m = 2,
µ0 = 0.5 and γ = 0.25.

Hawkes Process. The conditional intensity function is
given by λ(t) = λ0 + α

∑
ti<t

exp
(
− t−ti

σ

)
where λ0 = 0.2,

α = 0.8 and σ = 1.0.
Self-Correcting Process. The conditional intensity func-

tion is given by λ(t) = exp
(
µt−

∑
ti<t

α
)

where µ = 1 and

α = 0.2.
State-Space Continuous-Time Model. To model the

influence from both markers and time, we further propose
the State-Time Mixture model with the following steps:

3https://github.com/dunan/MultiVariatePointProcess

1. For each time tn−1, we take the mod of tn−1 by a period
of P = 24. If the residual is greater than 12, the process
is defined to be in the time state rn−1 = 0; otherwise, it
is in the time state rn−1 = 1.

2. Based on the combination of both the time state {rn−j}mj=1

and the marker state {yn−j}mj=1 of the previous m events,
the process will have the marker k for the next step in
the probability P (yn = k| {yn−j}mj=1 , {rn−j}

m
j=1).

3. Similarly, based on the combination of {yn−j}mj=1 and

{rn−j}mj=1 from the previous m events, the duration dn =
tn− tn−1 has a Poisson distribution with the expectation
determined by {rn−j}mj=1 and {yn−j}mj=1 jointly. Here,
we use the Poisson distribution to mimic the elapsed time
units (e.g., hours, minutes).

In our experiments, without loss of generality, we set the to-
tal number of markers to two, m = 3 and randomly initialize
the transition probabilities between states.

Experimental Results. Figure 4 presents the predic-
tive performance of RMTPP fitted to different types of time-
series data, where we simulate 1,000,000 events and use 90%
for training and the rest 10% for testing for each case. We
first compare the predictive performance of RMTPP with
the optimal estimator in the left column where the opti-
mal estimator knows the true conditional intensity function.
We treat the expectation of the time interval between the
current and the next event as our estimation. Grey curves
are the observed inter-event durations from 100 successive
events in the testing data. Blue curves are the respective
expectations given by the optimal estimator. Red curves
are the predictions from RMTPP. We can observe that even
though RMTPP has no prior knowledge about the true func-
tional form of each process, its predictive performance is
almost consistent with the respective optimal estimator.

The middle column of Figure 4 compares the learned con-
ditional intensity functions (red curves) with the true ones
(blue curves). It clearly demonstrates that RMTPP is able
to adaptively and accurately capture the unknown hetero-
geneous temporal dynamics of different time-series data. In
particular, because the order of dependency over the his-
tory is fixed for ACD, RMTPP almost exactly learns the
conditional intensity function with comparable BPTT steps.
The Hawkes and the self-correcting processes are more chal-
lenging in that the conditional intensity function depends
on the entire history. Because the events are far from be-
ing uniformly distributed, the influence from individual past
event to the occurrence of new future events can vary widely.
From this perspective, these processes essentially have ran-
dom varying order dependency on the history compared to
ACD. However, with properly chosen BPTT steps, RMTPP
can accurately capture the general shape and each single
change point of the true intensity function. In particular,
for the Hawkes case, the abruptly increased intensity from
time index 60 to 100 results in 40 events in a very tiny time
interval, but still, the predictions of RMTPP can capture
the trend of the true data.

The right column of Figure 4 reports the overall RMSE of
different processes between the predictions and the true test-
ing data. We can observe that RMTPP has very strong com-
petitive performance and better robustness against model
misspecification to capture the heterogeneity of the latent
temporal dynamics of different time-series data compared
to other parametric alternatives.

In addition to time, the state-space continuous-time model
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Figure 4: Time predictions on the testing data produced from different processes. Left column is the predicted inter-event
time. Blue curve is the optimal estimator, and red curve is RMTPP without any prior knowledge about the true dynamics of
each case. Middle column shows the learned intensity functions vs. the respective true ones. Right column gives the overall
testing RMSE of predicting the timings from different processes.
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Figure 5: Performance evaluation of predicting timings and markers on the state-space continuous-time model.
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Figure 7: Performance evaluation for predicting both marker and timing of the next event. The top row presents the
classification error of predicting th event markers, and the bottom row gives the RMSE of predicting the event timings.
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Figure 6: Predictive performance comparison with RNN
which is trained for predicting the next timing only in (a),
and for predicting the next marker only in (b).

also includes the marker information. Figure 5 compares the
error rates of different processes in predicting both event
timings and markers. Compared to the other baselines,
RMTPP is again consistent with the optimal estimator with-
out any prior knowledge about the true underlying genera-
tive process.

Finally, since the occurrences of future events depend on
both of the past marker and timing information, we would
like to investigate whether learning a unified representation
of the joint information can further improve future predic-
tions. Therefore, we train an RNN by only using the tempo-
ral and the marker information, respectively. Figure 6 gives
the comparisons between RMTPP and RNN where in panel
(a), RNN has the 4.3522 RMSE while RMTPP achieves a
2.7395 RMSE, and in panel (b), RNN reports 39.59% clas-
sification error while RMTPP reaches to the 27.16% level.
Clearly, they verify that the joint modeling of both informa-
tion can boost the performance of predicting future events.

6.3 Real Data
We evaluate the predictive performance of RMTPP on

real world datasets from a diverse range of domains.
New York City Taxi Dataset. The NYC taxi dataset4

4http://www.andresmh.com/nyctaxitrips/

contains ∼173 million trip records of individual Taxi for
consecutive 12 months in 2013. The location information
is available in the form of latitude/longitude coordinates.
Each record also contains the temporal information of pick-
up (drop-off) passengers associated with every trip. We
have used NYC Neighborhood Names GIS dataset5 to map
the coordinates to neighborhood names. For those coordi-
nates of which the location name is not directly available
in the GIS dataset, we use geodesic distance to map them
to the nearest neighborhood name. With this process we
obtained 299 unique locations as our markers. An event is
a pickup record for a taxi. Further, we have divided each
single sequence of a taxi into multiple fine-grained subse-
quences where two consecutive events are within 12 hours.
We obtained 670,753 sequences in total out of which 536,603
were used for training and 134,150 were used for testing. We
predict the location and the time of the next pickup event.

Financial Transaction Dataset. We have collected
a raw limited order book data from NYSE of the high-
frequency transactions for a stock in one day. It contains
0.7 million transaction records, each of which records the
time (in millisecond) and the possible action (B = buy, S
= sell). We treat the type of actions as markers. The in-
put data is a single long sequence with 624,149 events for
training and 69,350 events for testing. The task is to predict
which action will be taken next at what time.

Electrical Medical Records. MIMIC II medical dataset
is a collection of de-identified clinical visit records of Inten-
sive Care Unit patients for seven years. We have filtered out
650 patients and 204 diseases. Each event records the time
when a patient had a visit to the hospital. We have used
the sequences of 585 patients to train, and the rest for test.
The goal is to predict which major disease will happen to a
given patient at what time in the future.

Stack OverFlow Dataset. Stack Overflow6 is a question-

5https://data.cityofnewyork.us/City-Government/
Neighborhood-Names-GIS/99bc-9p23
6https://archive.org/details/stackexchange

http://www.andresmh.com/nyctaxitrips/
https://data.cityofnewyork.us/City-Government/Neighborhood-Names-GIS/99bc-9p23
https://data.cityofnewyork.us/City-Government/Neighborhood-Names-GIS/99bc-9p23
https://archive.org/details/stackexchange
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Figure 8: Predictive performance comparison with RNN which are trained only using the markers in the left column and
only using the temporal information in the right column.

answering website which exploits badges to encourage user
engagement and guide behaviors [17]. There are 81 types
of non-topical (i.e., non-tag affiliated) badges which can be
awarded either only once (e.g. Altruist, Inquisitive, etc.)
or multiple times (e.g. Stellar Question, Guru, Great An-
swer, etc.) to a user. By ignoring the badges which can be
awarded only once, we first select users who have earned at
least 40 badges between 2012-01-01 and 2014-01-01 and then
those badges which have been awarded at least 100 times
to the users selected in the first step. We have removed
the users who have been instantaneously awarded multiple
badges due to technical issues of the servers. In the end,
we have ∼6 thousand users with a total of ∼480 thousand
events where each badge is treated as a marker.

Experimental Results. We compare and report the
predictive performance of different models on the testing
data of each dataset in Figure 7. The hyper-parameters
of RMTPP across all these datasets are tuned as follow-
ing: learning rate in {0.1, 0.01, 0.001}; hidden layer size in
{64, 128, 256, 512, 1024}; momentum = 0.9 and L2 penalty =
0.001; and batch-size in {16, 32, 64}. Figure 7 compares the
predictive performance of forecasting markers and timings
for the next event of different processes across the four real
datasets. RMTPP outperforms the other alternatives with
lower errors for predicting both timings and markers. Be-
cause the MIMIC-II dataset has many short sequences and
is the smallest out of the four datasets, increasing the order
of Markov chain will decrease its classification performance.

We also compare RMTPP with RNN trained only with
the marker and with the timing information separately in
Figure 8. We can observe that RMTPP trained by incor-
porating both the past marker and timing information per-
forms consistently better than RNN trained with either one
source of the information alone. Finally, Figure 9 shows
the empirical distribution for the inter-event times on the
Stack Overflow and the financial transaction data. Com-
pared to the other temporal processes of fixed parametric
forms, even though the real datasets might have quite dif-
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Figure 9: Empirical distribution for the inter-event times.
The x-axis is in log-scale.

ferent characteristics, RMTPP is more flexible to capture
such heterogeneity in general.

7. DISCUSSIONS
We present the Recurrent Marked Temporal Point Pro-

cess, which builds a connection between recurrent neural
networks and point processes. The recurrent neural net-
work supports different architects, including the classic RNN
and modern LSTM, GRU, etc. Besides, in addition to the
inter-event temporal features, our model can be readily gen-
eralized to incorporate other contextual information. For
instance, in addition to training a global model, we can also
take the potential user-profile features into account for per-
sonalization. Furthermore, based on the structural informa-
tion of social networks, our model can be generalized in such
a way that the prediction of one user sequence depends not
only on her own history but also on the other users’ history
to capture their interactions in a networked setting.

To conclude, RMTPP inherits the advantages from both
the recurrent neural networks and the temporal point pro-
cesses to predict both the marker and the timing of the fu-
ture events without any prior knowledge about the hidden
functional forms of the latent temporal dynamics. Exper-
iments on both synthetic and real world datasets demon-
strate that RMTPP is robust to model mis-specifications
and has consistently better performance compared to the
other alternatives.
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trained by a hybrid psoâĂŞea algorithm. Neurocomputing,
70:2342–2353, 2007.

[40] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and
J. Leskovec. Seismic: A self-exciting point process model
for predicting tweet popularity. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’15, pages 1513–1522,
2015.

http://people.math.aau.dk/~{}jgr/teaching/punktproc11/tpp.pdf
http://people.math.aau.dk/~{}jgr/teaching/punktproc11/tpp.pdf

	Introduction
	Problem Definition
	Related Work
	Marked Temporal Point Process
	Parametrizations
	Major Limitations

	Recurrent Marked Temporal Point Process
	Model Formulation
	Parameter Learning

	Experiment
	Baselines
	Synthetic Data
	Real Data

	Discussions
	References

