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ABSTRACT
Clusters in document streams, such as online news articles,
can be induced by their textual contents, as well as by the
temporal dynamics of their arriving patterns. Can we lever-
age both sources of information to obtain a better clustering
of the documents, and distill information that is not possi-
ble to extract using contents only? In this paper, we pro-
pose a novel random process, referred to as the Dirichlet-
Hawkes process, to take into account both information in
a unified framework. A distinctive feature of the proposed
model is that the preferential attachment of items to clusters
according to cluster sizes, present in Dirichlet processes, is
now driven according to the intensities of cluster-wise self-
exciting temporal point processes, the Hawkes processes.
This new model establishes a previously unexplored connec-
tion between Bayesian Nonparametrics and temporal Point
Processes, which makes the number of clusters grow to ac-
commodate the increasing complexity of online streaming
contents, while at the same time adapts to the ever chang-
ing dynamics of the respective continuous arrival time. We
conducted large-scale experiments on both synthetic and
real world news articles, and show that Dirichlet-Hawkes
processes can recover both meaningful topics and temporal
dynamics, which leads to better predictive performance in
terms of content perplexity and arrival time of future docu-
ments.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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1. INTRODUCTION
Online news articles, blogs and tweets tend to form clus-

ters around real life events and stories on certain topics [2,
3, 9, 22, 7, 24]. Such data are generated by myriads of on-
line media sites in real-time and in large volumes. It is a
critically important task to effectively organize these arti-
cles according to their contents such that online users can
quickly sift and digest them.

Besides textual information, temporal information also
provides very good clues on the clustering of online docu-
ment streams. For instance, weather reports, forecasts and
warnings of the blizzard in New York city this year appeared
online even before the snowstorm actually started1. As the
blizzard conditions gradually intensified, more subsequent
blogs, posts and tweets were triggered around this event
in various online social media. Such self-excitation phe-
nomenon often leads to many closely related articles within
a short period of time. Later, after the influence of the event
past its peak, e.g., the blizzard eventually stopped, public
attention gradually turned to other events, and the following
articles on the blizzard faded out eventually.

Furthermore, depending on the nature of real life events,
relevant news articles can exhibit very different temporal
dynamics. For instance, articles on emergency or incidents
may rise and fall quickly, while some other stories, gossips
and rumors may have a far reaching influence, e.g., related
posts about a Hollywood blockbuster can continue to ap-
pear as more details and trailers are revealed. As a conse-
quence, the clustering of document streams can be improved
by taking into account the underlying heterogeneous tempo-
ral dynamics. Distinctive temporal dynamics will also help
us to disambiguate different clusters of similar topics emerg-
ing closely in time, to track their popularity and to predict
the future trends.

Such problem of modeling time-dependent topic-clusters
has been attempted by [2, 3], where the Recurrent Chinese
Restaurant Process(RCRP) [4] has been proposed to model

1http://www.usatoday.com/story/weather/2015/01/25/
northeast-possibly-historic-blizzard/22310869/
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each topic-cluster of a news stream. However, one of the
main deficiencies of the RCRP and related models [9] is that
they require an explicit division of the event stream into unit
episodes. Although this was ameliorated in the DD-CRP
model [6] simply by defining a continuous weighting func-
tion, it does not address the issue that the actual counts
of events are nonuniform over time. Artificially discretizing
the time line into bins introduces additional tuning param-
eters, which are not easy to choose optimally. Therefore,
in this work, we propose a novel random process, referred
to as the Dirichlet-Hawkes process (DHP), to take into ac-
count both sources of information to cluster continuous-time
document streams. More precisely, we make the following
contributions :

• We establish a previously unexplored connection be-
tween Bayesian Nonparametrics and Temporal Point
Processes, which allows the number of clusters to grow
in order to accommodate the increasing complexity
of online streaming contents, while at the same time
learns the ever changing latent dynamics governing the
respective continuous arrival patterns inherently.
• We point out that our combination of Dirichlet pro-

cesses and Hawkes processes has implications beyond
clustering document streams. We will show that our
construction can be generalized to other Nonparamet-
ric Bayesian models, such as the Pitman-Yor processes [23]
and the Indian Buffet processes [16].
• We propose an efficient online inference algorithm which

can scale up to millions of news articles with near
constant processing time per document and moderate
memory consumptions.
• We conduct large-scale experiments on both synthetic

and real-world datasets to show that Dirichlet-Hawkes
processes can recover meaningful topics and temporal
dynamics, leading to better predictive performance in
terms of both content perplexity and document arriv-
ing time.

2. PRELIMINARIES
We first provide a brief introduction to the two major

building blocks for the Dirichlet-Hawkes processes: Bayesian
nonparametrics and temporal point processes. Bayesian non-
parametrics, especially Chinese Restaurant Processes, are a
rich family of models which allow the model complexity (e.g.,
number of latent clusters, number of latent factors) to grow
as more data are observed [18]. Temporal point processes,
especially Hawkes Processes [17], are the mathematical tools
for modeling recurrent patterns and continuous-time nature
of real world events.

2.1 Bayesian Nonparametrics
The Dirichlet process (DP) [5] is one of the most basic

Bayesian nonparametric processes, parameterized by a con-
centration parameter α > 0 and a base distribution G0(θ)
over a given space θ ∈ Θ. A sample G ∼ DP (α,G0) drawn
from a DP is a discrete distribution by itself, even the base
distribution is continuous. Furthermore, the expected value
of G is the base distribution, and the concentration param-
eter controls the level of discretization in G: in the limit
of α → 0, a sampled G is concentrated on a single value,
while in the limit of α → ∞, a sampled G becomes con-

tinuous. In between are the discrete distributions with less
concentration as α increases.

Since G itself is a distribution, we can draw samples θ1:n

from it, and use these samples as the parameters for models
of clusters. Equivalently, let θ1:n denote the collection of
{θ1, . . . , θn−1}, and {θk} be the set of distinct values in θ1:n.
Instead of first drawing G and then sampling θ1:n, this two-
stage process can be simulated as follows :

1. Draw θ1 from G0.
2. For n > 1:

(a) With probability α
α+n−1

draw θn from G0.

(b) With probability mk
α+n−1

reuse θk for θn, where
mk is the number of previous samples with value
θk.

This simulation process is also called Chinese Restaurant
Process(CRP), which captures the “rich get richer” or pref-
erential attachment phenomenon. Essentially, in this CRP
metaphor, a Chinese restaurant has an infinite number of
tables (each corresponding to a cluster). The nth customer
θn can either choose a table with mk existing customers
with probability mk

n−1+α
, or start a new table with probabil-

ity α
n−1+α

. Formally, the conditional distribution of the θn
can be written as a mixture:

θn | θ1:n−1 ∼
∑
k

mk

n− 1 + α
δ(θk) +

α

n− 1 + α
G0(θ). (1)

In other words, it is more likely to sample from larger clus-
ters, and the probability is proportional to the size of that
cluster. Since the model allows new clusters to be created
with a small probability, the model has the potential to gen-
erate infinite number of clusters adapted to the increasing
complexity of the data. Thus the Dirichlet process is often
used as a prior for the parameters of clustering models.

The recurrent Chinese restaurant process (RCRP)
is an extension of the DP which takes into account the
temporal coherence of clusters for documents divided into
episodes [4].

One can think of RCRP as a discrete-time sequence of
DPs, one for the data in each episode. The clusters in these
DPs are shared, and the DPs appearing later in time can
have a small probability to create new clusters. More specif-
ically, the conditional distribution of the nth value, θt,n,
sampled in episode t can be written as a mixture

θt,n | θ1:t−1,:, θt,1:n−1 ∼
∑
k

mk,t +m′k,t∑
j(mj,t +m′j,t) + α

δ(θk)

+
α∑

j(mj,t +m′j,t) + α
G0, (2)

where θ1:t−1,: is the set of all samples drawn in previous
episodes from 1 to t − 1, and θt,1:n−1 is the set of samples
drawn in the current episode t before θt,n. The statistic mk,t

is the number of previous samples in episode t with value
θk, and m′k,t captures related information in θ1:t−1,: about
the value θk. The latter quantity, m′k,t, can be modeled in
many ways. For instance, the original model in [4] applies a
Markov Chain to model m′k,t, and later follow-ups [2, 3] use
a weighted combination of counts from recent ∆ episodes

m′k,t =

∆∑
j=1

e
− j
βmk,t−j , (3)



with an exponential kernel parametrized by the decaying
factor β. Essentially, it models the decaying influence of
counts from previous episodes across time. RCRP can also
be used as a prior for the parameters of clustering models.
For instance, Figure 2(a) shows a combination of RCRP and
a bag-of-words model for each cluster.

However, RCRP requires artificially discretizing the time
line into episodes, which is unnatural for continuous-time
online document streams. Second, different type of clus-
ters is likely to occupy very different time scales, and it is
not clear how to choose the time window for each episode
a-priori. Third, the temporal dependence of clusters across
episodes is hard-coded in Equation (3), and it is the same for
different clusters. Such design cannot capture the distinc-
tive temporal dynamics of different type of clusters, such as
related articles about disasters vs. Hollywood blockbusters,
and fail to learn such dynamics from real data. We will use
the Hawkes process introduced next to address these draw-
backs of RCRP when handling temporal dynamics.

2.2 Hawkes Process
A temporal point process is a random process whose rea-

lization consists of a list of discrete events localized in time,
{ti} with ti ∈ R+ and i ∈ Z+. Many different types of data
produced in online social networks can be represented as
temporal point processes, such as the event time of retweets
and link creations. A temporal point process can be equiva-
lently represented as a counting process, N(t), which records
the number of events before time t. Let the history T be
the list of event time {t1, t2, . . . , tn} up to but not including
time t. Then in a small time window dt between [0, t), the
number of observed event is

dN(t) =
∑
ti∈T

δ(t− ti) dt, (4)

and hence N(t) =
∫ t

0
dN(s), where δ(t) is a Dirac delta

function. It is often assumed that only one event can happen
in a small window of size dt, and hence dN(t) ∈ {0, 1}.

An important way to characterize temporal point pro-
cesses is via the conditional intensity function — the stochas-
tic model for the next event time given all previous events.
Within a small window [t, t + dt), λ(t)dt is the probability
for the occurrence of a new event given the history T :

λ(t)dt = P {event in [t, t+ dt)|T } . (5)

The functional form of the intensity λ(t) is often designed
to capture the phenomena of interests [1]. For instance,
in a homogeneous Poisson process, the intensity is as-
sumed to be independent of the history T and constant over
time, i.e., λ(t) = λ0 > 0. In an inhomogeneous Pois-
son process, the intensity is also assumed to be indepen-
dent of the history T but it can be a function varying over
time, i.e., λ(t) = g(t) > 0. In both case, we will use notation
Poisson(λ(t)) to denote a Poisson process.

A Hawkes process captures the mutual excitation phe-
nomena between events, and its intensity is defined as

λ(t) = γ0 + α
∑
ti∈T

γ(t, ti), (6)

where γ(t, ti) > 0 is the triggering kernel capturing temporal
dependencies , γ0 > 0 is a baseline intensity independent of
the history and the summation of kernel terms is history de-
pendent and a stochastic process by itself. The kernel func-

tion can be chosen in advance, e.g., γ(t, ti) = exp(− |t− ti|)
or γ(t, ti) = I[t > ti], or directly learned from data.

A distinctive feature of a Hawkes process is that the oc-
currence of each historical event increases the intensity by
a certain amount. Since the intensity function depends on
the history T up to time t, the Hawkes process is essentially
a conditional Poisson process (or doubly stochastic Poisson
process [19]) in the sense that conditioned on the history T ,
the Hawkes process is a Poisson process formed by the su-
perposition of a background homogeneous Poisson process
with the intensity γ0 and a set of inhomogeneous Poisson
processes with the intensity γ(t, ti). However, because the
events in a past interval can affect the occurrence of the
events in later intervals, the Hawkes process in general is
more expressive than a Poisson process. Hawkes process is
particularly good for modeling repeated activities, such as
social interactions [14], search behaviors [21], or infectious
diseases that do not convey immunity.

Given a time t′ > t, we can also characterize the con-
ditional probability that no event happens during [t, t′) and
the conditional density that an event occurs at time t′, using
the intensity λ(t) [1], as

S(t′|T ) = exp

(
−
∫ t′

t

λ(τ) dτ

)
, f(t′|T ) = λ(t′)S(t′|T ).

(7)

With these two quantities, we can express the likelihood of
a list of event times T = {t1, t2, . . . , tn} in an observation
window [0, T ) with T > tn as

L =
∏
ti∈T

f(ti|T ) =
∏
ti∈T

λ(ti) · exp

(
−
∫ T

0

λ(τ) dτ

)
(8)

which will be useful for learning the parameters of our model
from observed data. With the above backgrounds, now we
proceed to describe our Dirichlet-Hawkes process.

3. DIRICHLET-HAWKES PROCESS
The key idea of Dirichlet-Hawkes process (DHP) is to

have the Hawkes Process model the rate intensity of events
(e.g., the arrivals of documents), while the Dirichlet Pro-
cess captures the diversity of event types (e.g., clusters of
documents). More specifically, DHP is parametrized by an
intensity parameter λ0 > 0, a base distribution G0(θ) over
a given space θ ∈ Θ and a collection of triggering kernel
functions {γθ(t, t′)} associated with each event type of pa-
rameter θ. Then, we can generate a sequence of samples
{(ti, θi)} as follows :

1. Draw t1 from Poisson(λ0) and θ1 from G0(θ).
2. For n > 1:

(a) Draw tn > tn−1 from Poisson
(
λ0 +

∑n−1
i=1 γθi(t, ti)

)
.

(b) Draw θn from G0(θ) with probability :

λ0

λ0 +
∑n−1
i=1 γθi(tn, ti)

.

(c) Reuse θk for θn with probability :

λθk (tn)

λ0 +
∑n−1
i=1 γθi(tn, ti)

,

where λθk (tn) :=
∑n−1
i=1 γθi(tn, ti)I[θi = θk] is the

intensity of a Hawkes process for previous events
with value θk.



t1 t4 Poisson(λ0)

Hawkes process for θ1t6 t7 t8

Hawkes process for θ2t2 t3 t5 t9

Figure 1: A sample from Dirichlet-Hawkes process. A

background Poisson process with intensity λ0 sampled

the starting time points t1 and t4 for two different event

types with the respective parameter θ1 and θ2. These

two initial events then generate a Hawkes process of their

own, with events at time {t2, t3, t5, t9} and {t6, t7, t8}, re-

spectively.

Figure 1 gives an intuitive illustration of the Dirichlet-
Hawkes Process. Compared to the Dirichlet process, the
intensity parameter λ0 here serves the similar role to the
concentration parameter α in the Dirichlet process. Instead
of counting the number, mk, of samples within a cluster, the
Dirichlet-Hawkes process uses the intensity function λθk (t)
of a Hawkes process which can be considered as a tempo-
rally weighted count. For instance, if γθ(t, ti) = I[t > ti],
then λθk (t) =

∑n−1
i=1 I[t > ti]I[θi = θk] is equal to mk. If

γθ(t, ti) = exp(−|t − ti|), then λθk (t) =
∑n−1
i=1 exp(−|t −

ti|)I[θi = θk], and each previous event in the same clus-
ter contributes a temporally decaying increment. Other
triggering kernels associated with θi can also be used or
learned from data. Thus the Dirichlet-Hawkes process is
more general than the Dirichlet process and can generate
both preferential-attachment type of clustering and rich tem-
poral dynamics.

From the view of a temporal point process, the generation
of the event timing in Dirichlet-Hawkes process can also be
viewed as the superposition of a Poisson process λ0 and sev-
eral Hawkes processes (conditional Poisson processes), one
for each distinctive value of θd and with intensity λθd(t).
Thus the overall event intensity is the sum of the intensities
from individual processes [20]

λ̄(t) = λ0 +

D∑
d=1

λθd(t),

where D is the total number of distinctive values {θi} in the
DHP up to time t.

Therefore, the Dirichlet-Hawkes process can capture the
following four desirable properties :

1. Preferential attachment: Draw θn according to λθk (tn).
The larger the intensity for a Hawkes process, the more
likely the next event is from that cluster.

2. Adaptive number of clusters: Draw θn according to
λ0. There is always some probability of generating
new cluster with λ0.

3. Self-excitation: This is captured by the intensity of the
Hawkes process λθk (t) =

∑n−1
i=1 γθi(tn, ti)I[θi = θk].

4. Temporal decays: This is captured by the trigger-
ing kernel function γθ(t, ti) which is typically decaying
over time.

Finally, given the sequence of events (or samples) T =
{(ti, θi)}ni=1 from a Dirichlet-Hawkes process, the likelihood
of the event arrival times can be evaluated based on (8) as

L(T ) = exp

(
−
∫ T

0

λ̄(τ)dτ

) ∏
(ti,θi)∈T

λθi(ti), (9)

wv
n

snsn−1 sn+1

θs

θ0

wv
n

snsj

tj tn

αsα0

n− 1

θs

θ0
(a) RCRP (b) Dirichlet-Hawkes Process

Figure 2: Generative models for different processes.

Compared to the recurrent Chinese restaurant process
(RCRP) appeared in [4], a distinctive feature of the Dirichlet-
Hawkes process is that there is no need to discretize the time
and divide events into episodes. Furthermore, the tempo-
ral dynamics is controlled by more general triggering kernel
functions, and can be statistically learned from data.

4. GENERATING TEXT WITH DHP
As we have defined the Dirichlet-Hawkes process (DHP),

we will use it as a prior for modeling continuous-time doc-
ument streams. The goal is to discover clusters from the
document stream based on both contents and temporal dy-
namics. Essentially, the set of {θi} sampled from the DHP
will be used as the parameters for document content model,
and each cluster will have a distinctive value of θd ∈ {θi}.
Furthermore, we will allow different clusters to have different
temporal dynamics, with the corresponding triggering ker-
nel drawn from a mixture of K base kernels. We will first
present the overall generative process of the model before
going into details of these components in Figure 2(b).

1. Draw t1 from Poisson(λ0), θ1 from Dir(θ|θ0), and αθ1
from Dir(α|α0).

2. For each word v in document 1: wv1 ∼ Multi(θ1)
3. For n > 1:

(a) Draw tn > tn−1 from Poisson
(
λ0 +

∑n−1
i=1 γθi(tn, ti)

)
,

where γθi(tn, ti) =

K∑
l=1

αlθi · κ(τl, tn − ti)

(b) Draw θn from Dir(θ|θ0) with probability

λ0

λ0 +
∑n−1
i=1 γθi(tn, ti)

, (10)

and draw αθn from Dir(α|α0)
(c) Reuse previous θk for θn with probability

λθk (tn)

λ0 +
∑n−1
i=1 γθi(tn, ti)

, (11)

where λθk (tn) =
∑n−1
i=1 γθi(tn, ti)I[θi = θk].

(d) For each word v in document n:

wvn ∼ Multi(θn)



Content model. Many document content models can
be used here. For simplicity of exposition, we have used a
simple bag-of-word language model for each cluster in the
above generative process. In this case, the base distribution
G(θ) in the DHP is now chosen as a Dirichlet distribution,
Dir(θ|θ0), with parameter θ0. Then, wvn, the vth word in
the nth document is sampled according to a multinomial
distribution

wvn ∼ Multi(θsn). (12)

where sn is the cluster indicator variable for the nth doc-
ument, and the parameter θsn is a sample drawn from the
DHP process.

Triggering kernel. We allow different clusters to have
different temporal dynamics, by representing the triggering
kernel function of the Hawkes Process as a non-negative
combination of K base kernel functions,i.e.,

γθ(ti, tj) =

K∑
l=1

αlθ · κ(τl, ti − tj), (13)

where tj < ti,
∑
l α

l
θ = 1, αlθ > 0, and τi is the typical

reference time points, e.g., 0.5, 1, 8, 12, 24 hours etc.
To simplify notations, define ∆ij = ti−tj , αθ = (α1

θ, . . . , α
K
θ )>

and k(∆ij) = (κ(τ1,∆ij), . . . , κ(τK ,∆ij))
>, so γθ(ti, tj) =

α>θ k(∆ij). Since each cluster has its own set of kernel pa-
rameters αθ, we are able to track their different evolving
processes. Given T = {(tn, θn)}Nn=1, the intensity function
of the cluster with parameter θ is represented as

λθ(t) =
∑
ti<t

α>θ k(t− ti)I[θi = θ], (14)

and the likelihood L(T ) of observing the sequence T before
time T based on Equation (9) is

exp

−∑
θi=θ

α>θ gθ − Λ0

 ∏
θi=θ

∑
tj<ti,θj=θ

α>θ k(∆ij), (15)

where glθ =
∑
ti<T,θi=θ

∫ T
ti
κ(τl, t− ti)dt and Λ0 =

∫ T
0
λ0dt.

This can be done efficiently for many kernels, such as the
Gaussian RBF kernel [12, 13], Rayleigh kernel [1], etc. Here,
we choose the Gaussian RBF kernel κ(τl,∆) = exp(−(∆ −
τl)

2)/2σ2
l )/
√

2πσ2
l , so the integral glθ has the analytic form:

∑
ti<T,θi=θ

1

2

(
erfc

(
− τl√

2σ2
l

)
− erfc

(
T − ti − τl√

2σ2
l

))
(16)

Inexact event timing. In practice, news articles are
usually automatically collected and indexed by web crawlers.
Sometimes, due to unexpected errors or the available mini-
mum timing resolution, we can observe a few m documents
at the same time tn. In this case, we assume that each of
the m documents actually arrived between tn−1 and tn. To
model this rare situation, we can randomly pick tn and re-
place the exact timestamps within the interval [tn, tn+m−1]
by tn+m−1 to take that into account.

5. INFERENCE
Given a stream of documents {(di, ti)}ni=1, at a high level,

the inference algorithm alternates between two subroutines.
The first subroutine samples the latent cluster membership
(and perhaps the missing time) for the current document

dn by Sequential Monte Carlo [10, 11]; and then, the sec-
ond subroutine updates the learned triggering kernels of the
respective cluster on the fly.

Sampling the cluster label. Let s1:n and t1:n be the la-
tent cluster indicator variables and document time for all the
documents d1:n. For each sn, we have sn ∈ {0, 1, . . . , D},
where D is the total number of distinctive values {θi}, and
sn = 0 refers to the background Poisson process Poisson(λ0).
In the streaming context, it is shown by [2, 3] that it would
be more suitable to efficiently draw a sample for the latent
cluster labels s1:n shown in Figure 2(b) from P (s1:n|d1:n, t1:n)
by reusing the past samples from P (s1:n−1|d1:n−1, t1:n), which
motivates us to apply the Sequential Monte Carlo method [10,
11, 2, 3]. Briefly, a particle keeps track of an approxima-
tion of the posterior P (s1:n−1|d1:n−1, t1:n−1), where d1:n−1,
t1:n−1, s1:n−1 represent all past documents, timestamps and
cluster labels, and updates it to get an approximation for
P (s1:n|d1:n, t1:n). We maintain a set of particles at the same
time, each of which represents a hypothesis about the latent
random variables and has a weight to indicate how well its
hypothesis can explain the data. The weight wfn of each par-
ticle f ∈ {1, . . . , F} is defined as the ratio between the true

posterior and a proposal distribution wfn = P (s1:n|d1:n,t1:n)
π(s1:n|d1:n,t1:n)

.

To minimize the variance of the resulting particle weight,
we take π(sn|s1:n−1, d1:n, t1:n) to be the posterior distribu-
tion P (sn|s1:n−1, d1:n, t1:n) [11, 2]. Then, the unnormalized
weight wfn can be updated by

wfn ∝ wfn−1 · P (dn|sfn, d1:n−1). (17)

Because the posterior is decomposed as P (sn|dn, tn, rest) ∼
P (dn|sn, rest) · P (sn|tn, rest), by the Dirichlet-Multinomial
conjugate relation, the likelihood P (dn|sn, rest) is given by

Γ
(
Csn\dn + V θ0

)∏V
v Γ

(
C
sn\dn
v + Cdnv + θ0

)
Γ (Csn\dn + Cdn + V θ0)

∏K
k Γ

(
C
sn\dn
v + θ0

) , (18)

where Csn\dn is the word count of cluster sn excluding the

document dn, Cdn is the word count of document dn, C
sn\dn
v

and Cdnv refer to the count of the vth word, and V is the
vocabulary size. Finally, P (sn|tn, rest) is the prior given by
the Dirichlet-Hawkes process (10) and (11) as

P (sn = k|tn, rest) =


λθk

(tn)

λ0+
∑n−1
i=1 γθi

(tn,ti)
if k occupied

λ0

λ0+
∑n−1
i=1 γθi

(tn,ti)
otherwise

(19)

Updating the triggering kernel. Given sn, we denote
the respective triggering kernel αθsn by αsn for brevity. By
the Bayesian rule, the posterior is given by P (αsn |Tsn) ∼
P (Tsn |αsn)P (αsn |α0), where Tsn = {(ti, si)|si = sn} is the
set of events in cluster sn. We can either update the esti-
mation of αsn by MAP for that the log-likelihood of (15)
is concave in αsn . Alternatively, we can draw a set of sam-

ples
{
αisn

}N
i=1

from the prior P (αsn |α0) and calculate the
weighted average:

α̂sn =

N∑
i=1

wi ·αisn , (20)

where wi = P (Tsn |αisn)P (αisn |α0)/
∑
i P (Tsn |αisn)P (αisn |α0).

For simplicity, we choose the latter method in our implemen-
tation.



Sampling the missing time. In the rare case when m
documents arrive with the same timestamp tn, the precise
document time is missing during the interval [tn−1, tn]. As a
result, we need joint samples for

{
(sin, t

i
n)
}m
i=1

where sin and

tin are the cluster membership and the precise arriving time
for the ith document din. However, since m is expected to be
small in practice, we can use Gibbs sampling to draw sam-
ples from the distribution P (t1:m

n , s1:m
n |t1:n−1, s1:n−1, rest)

where s1:m
n and t1:m

n are the cluster labels and document
time for the m documents in the current nth interval. The
initial values for t1:m

n can be assigned uniformly from the
interval [tn−1, tn]. After fixing the sampled s1:m

n and the

other
{
tkn
}
k 6=i, we are going to draw a new sample tin

′
from

P (tin|sin, rest). Let Tsin\t
i
n be the set of all the document

time excluding tin in cluster sin. The posterior of tin is
proportional to the joint likelihood P (tin|sin, Tsin\t

i
n, rest) ∝

P (tin, Tsin\t
i
n|sin, rest). Therefore, we can apply Metropolis

algorithm in one dimension to draw the next sample tin
′
.

Specifically, let’s first uniformly draw tin
′

from [tn−1, tn] and
calculate the following ratio between the two joint likeli-

hoods r =
P (tin

′
,T
sin
\tin|s

i
n,rest)

P (tin,Tsin
\tin|sin,rest)

. We then accept tin
′

if r > 1;

otherwise, we accept it with the probability r. With the new
sample tin

′
, we can update the kernel parameter by (20). Fi-

nally, we need to update the particle weight by considering
the likelihood of generating such m documents as

wfn ∝ wfn−1 ×
m∏
i=1

P (din|sf,in , d1:n−1, d
1:m\i
n , rest)

×
∏

s∈{sin}mi=1

P (ms|Ts, rest), (21)

where d
1:m\i
n is the set of m documents excluding din, ms is

the number of documents with cluster membership s among
the m documents, and Ts is the set of document time in
cluster s. Conditioned on the history up to tn, the Hawkes
process is an inhomogeneous Poisson process, and thus we
know that P (ms|Ts, rest) is simply a Poisson distribution

with mean Λs =
∫ tn
tn−1

λs(t)dt. For Gaussian kernels, we

can use (16) to obtain the analytic form of Λs. The overall
pseudocode for Sequential Monte Carlo is formally presented
in Algorithm 1, and the Gibbs sampling framework is given
by Algorithm 2.

Efficient Implementation. In order to scale with large
datasets, the online inference algorithm should be able to
process each individual document in an expected constant
time. Particularly, the expected time cost of sampling the
cluster label and updating the triggering kernel should not
grow with the amount of documents we have seen so far. The
most fundamental operation in Algorithm 1 and 2 is to eval-
uate the joint likelihood (15) of all the past document time
to update the triggering kernel in every cluster. A straight-
forward implementation requires repeated computation of a
sum of Gaussian kernels over the whole history, which tends
to be quadratic to the number of past documents.

Based on the fast decaying property that the Gaussian
kernel decreases exponentially as the distance deviating from
its center increases quadratically, we can alleviate the prob-
lem by ignoring those past time far away from the kernel
center. Specifically, given an error tolerance ε, we only need

Algorithm 1: The SMC Framework

1 Initialize wf1 to 1
F

for all f ∈ {1 . . . F};
2 for each event time tn, n = 1, 2, . . . do
3 for f ∈ {1, . . . , F} do
4 if one document dn at the time tn then
5 sample sn from (19) and add tn to sn;
6 update the triggering kernel by (20);
7 update the particle weight by (17);

8 else if m > 1 documents d1:m
n with the same tn

then
9 sample

{
s1:m
n

}
,
{
t1:m
n

}
by Algorithm 2;

10 update the particle weight by (21);

11 end

12 end
13 Normalize particle weight;

14 if ‖wn‖−2
2 < threshold then

15 resample particles;

16 end

Algorithm 2: Gibbs sampling for cluster label and time

1 for iter = 1 to MaxIterG do
2 if update cluster label sin then
3 remove tin from cluster sin and update the

triggering kernel by (20);

4 draw a new sample sin
′

from (19);

5 add tin into cluster sin
′

and update the triggering
kernel by (20);

6 else if update document time tin then
7 for iter = 1 to MaxIterM do

8 draw a new sample tin
′ ∼ Unif(tn−1, tn);

9 if r =
P (tin

′
,T
sin
\tin|s

i
n,rest)

P (tin,Tsin
\tin|sin,rest)

> 1 then

tin ← tin
′
;

10 else tin ← tin
′

with probability r;

11 end

12 update the triggering kernel of sin by (20);

13 end

14 end

to look back until we reach the time

tu = tn −

(
τm +

√
−2σm log

(
0.5ε

√
(2πσ2

m)
))

, (22)

where τm = maxl τl, σm = maxl σl and tn is the current
document time to guarantee that the error of the Gaussian
summation with respect to each reference point τl is at most
ε. Because the number of documents within [tu, tn], referred
to as the active interval, is expected to be constant as we
run the algorithm for a while when the Hawkes Process be-
comes stationary, the average running time will keep stable
in the long run. In addition, from the log of (15), for the
newly added time tn, we only need to add the new inten-
sity value λsn(tn), set the observation window T = tn, and
update the integral of the intensity function (16). There-
fore, we can precompute and store the likelihood value for
each sample αksn and incrementally update it in each cluster.
Similarly, in the Metropolis loop of Algorithm 2, we need to
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(a) Temporally well-separated clusters. (b) Temporally interleaved clusters.

Figure 3: Effectiveness of Temporal Dynamics. Panel (a) and (b) show different cases where the clusters are temporally

well-separated and interleaved, respectively. In each case, the left plot shows the intensity function of each cluster,

and the right plot compares the performance by Normalized Mutual Information.

update the triggering kernel whenever a document time tj is
updated or deleted from a cluster. In this case, since the ob-
servation window T is fixed, we only need to recompute the
affected intensity value λsn(tj) and the affected individual
summation terms in (16) for those time ti < tn, ti ∈ Tsn .

In a nutshell, because we depend on the past documents
only within the active interval, the above partial updating
only performs the necessary calculations, and the overall
memory usage and the expected time cost per document
tend to be constant with respect to the number of incom-
ing documents and the existing number of clusters, which is
empirically verified in Figure 6 of the following experiments.

6. EXPERIMENTS
On massive synthetic and real-world datasets, in this sec-

tion, we demonstrate that DHP not only can provide clusters
of relevant news articles but also is able to uncover meaning-
ful latent temporal dynamics inherent inside those clusters.

6.1 Synthetic Data
On synthetic data, we investigate the effectiveness of the

temporal dynamics for improving clustering, the learning
performance of the inference algorithm and the efficacy of
the sampling method for missing time.

6.1.1 Do temporal dynamics help?
Because DHP exploits both temporal dynamics and tex-

tual contents, we expect that documents with similar topics
and temporal patterns should be related to each other. On
the other hand, for those documents with similar topics but
different temporal behaviors, our model should still be able
to disambiguate them to certain extent.

Experimental Setup. We simulate two clusters on a
vocabulary set of 10,000 words. The word distribution of one
cluster mainly concentrates on the first 8,000 words, and we
shift the word distribution of the other one to have a varying
vocabulary overlap from 45 to 90 percent. The triggering
kernels of the clusters have two basic RBF kernels at 7 and
11 on the time line with bandwidth 0.5. We set α0 = 1 of
the language model for both methods, and set λ0 = 0.01 for
DHP. We use the Normalized Mutual Information (NMI)
to compare the uncovered clusters with the ground-truth
clusters. The range of NMI is from 0 to 1, so larger values
indicate better performance. All experiments are repeated
for 10 times.

Results. In Figure 3(a), we first consider an easy case
where the clusters are well-separated in time, which corre-

sponds to the usual case that each cluster corresponds to a
single short lifetime event. Because the clusters come and
go sequentially in time, it helps to differentiate the clusters
as their topics become more similar. This effect is verified
in the right panel of Figure 3(a) where the NMI value is
still close to one even when the topic vocabularies have 90%
overlap. Besides, in Figure 3(b), we consider a more chal-
lenging situation where the clusters evolve side-by-side in
time. Because the clusters have different triggering kernels,
we can still expect the Dirichlet-Hawkes model to perform
well. In the right panel of Figure 3(b), the performance of
DHP only starts to decrease when the overlapping grows
to 85-percent. Overall, because RCRP does not explicitly
learn the temporal dynamics of each cluster, it cannot tell
the temporal difference. In contrast, as DHP clusters the
incoming documents, it also automatically updates its in-
ference about the temporal dynamics of each cluster, and
Figure 3 demonstrates that this temporal information could
be useful to have better clustering performance.

6.1.2 Can we learn temporal dynamics effectively?
Experimental Setup. Without loss of generality, each

cluster has RBF kernels located at 3, 7, and 11 with band-
width 0.5. We let true coefficients of the triggering kernels
for each cluster be uniformly generated from the simplex
and simulated 1,000,000 documents. We randomly produce
the missing time to allow at most three documents to ar-
rive at the same time. The maximum Gibbs and Metropolis
iteration is set to 100 and 50 with 8 particles in total.

Results. Figure 4(a) shows the learned triggering kernel
for one randomly chosen cluster against the ground-truth.
Because the size of the simulated clusters is often skew,
we only compare the estimated triggering kernels with the
ground-truth for the top-100 largest clusters. Moreover, Fig-
ure 4(b) presents the estimation error with respect to the
number of samples drawn from the Dirichlet prior. As more
samples are used, the estimation performance improves, and
Figure 4(c) shows that only a few particles are enough to
have good estimations.

6.1.3 How well can we sample the missing time?
Finally, we check whether the sampled missing time from

Algorithm 2 are valid samples from a Hawkes Process.
Experimental Setup. Fixing an observation window

T = 100, we first simulate a sequence of events HT with the
true triggering kernels described in 6.1.2. Given HT , the
form of the intensity function λ(t|HT ) is fixed. Next, we
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decreases as more samples are used for learning the triggering kernels; (c) A few particles are sufficient to have good

estimation; (d) Quantile plot of the intensity integrals from the sampled document time.

equally divide the interval [0, T ] into five partitions {Ti}5i=1,
in each of which we incrementally draw ΛTi =

∫
Ti
λ(t|HT )dt

samples by Algorithm 2 using the true kernels. Then, we
collect the samples from all partitions to see whether this
new sequence is a valid sample from the Hawkes Process
with the intensity λ(t|HT ).

Results. By the Time Changing Theorem [8], the in-

tensity integrals
∫ ti
ti−1

λ(τ)dτ from the sampled sequence

should conform to the unit-rate exponential distribution.
Figure 4(d) presents the quantiles of the intensity integrals
against the quantiles of the unit-rate exponential distribu-
tion. It clearly shows that the points approximately lie on
the line indicating that the two distributions are very sim-
ilar to each other and thus verifies that Algorithm 2 can
effectively generate samples for the missing time from the
Hawkes Process of each cluster.

6.2 Real World Data
We further examine our model on a set of 1,000,000 main-

stream news articles extracted from the Spinn3r2 dataset
from 01/01 to 02/15 in 2011.

Experimental Setup. We apply the Named Entity Rec-
ognizer from Stanford NER system [15] and remove common
stop-words and tokens which are neither verbs, nouns, nor
adjectives. The vocabulary of both words and named enti-
ties is pruned to a total of 100,000 terms. We formulate the
triggering kernel of each cluster by placing a RBF kernel at
each typical time point : 0.5, 1, 8, 12, 24, 48, 72, 96, 120,
144 and 168 hours with the respective bandwidth being set
to 1, 1, 8, 12, 12, 24, 24, 24, 24, 24, and 24 hours, in or-
der to capture both the short-term and long-term excitation
patterns. To enforce the sparse structure over the triggering
kernels, we draw 4,096 samples from the Dirichlet prior with
the concentration parameter α0 = 0.1 for each cluster. The
intensity rate for the background Poisson process is set to
λ0 = 0.1, and the Dirichlet prior of the language model is
set to φ0 = 0.01. In fact, the results are robust across a wide
range of settings from 0.01 to 0.1 for both θ0 and λ0, which
can be further tuned by following the techniques in [2]. We
report the results by using 8 particles.

Content Analysis. Figure 5 shows four discovered ex-
ample stories, including the ‘Tucson shooting’ event3, the

2http://www.icwsm.org/data/
3http://en.wikipedia.org/wiki/2011_Tucson_shooting

movie ‘Dark Knight Rises4’, Space Shuttle Endeavor’s last
mission5, and ‘Queensland Flooding’ disaster6. The top row
lists the top-100 frequent words in each story, showing that
DHP can deduce the clusters with meaningful topics.

Triggering Kernels. The middle row of Figure 5 gives
the learned triggering kernel of each story, which quantifies
the influence over future events from the occurrence of the
current event. For the ‘Tucson Shooting’ story, its triggering
kernel reaches the peak within half an hour since its birth,
decays quickly until the 30th hour, and then has a weak
tailing influence around the 72nd hour, showing that it has
a strong short-term effect, that is, most related articles and
posts arrive closely in time. In contrast, the triggering kernel
of the story ‘Dark Knight Rises’ keeps stable for around 20
hours before it decays below 10−4 by the end of a week. The
continuous activities of this period indicate that the current
event tends to have influence over the events 20 hours later.

Temporal Dynamics. The bottom row of Figure 5 plots
the respective intensity functions which indicate the popu-
larity of the stories along time. We can observe that most re-
ports of ‘Tucson Shooting’ concentrate within the following
two weeks starting from 01/13/2011 and fade out quickly by
the end of the month. In contrast, we can verify the longer
temporal effect of the ‘Dark Knight Rises’ movie in Fig-
ure 5(b) where the temporal gaps between two large spikes
are about several multiples of the 20-hour period. Because
this story is more about entertainment, including the arti-
cles about Anne Hathaway’s playing of the Cat-woman in
the film as well as other related movie stars, it maintains
a certain degree of hotness by attracting people’s attention
as more production details of the movie are revealed. For
the NASA event we can see in the intensity function of Fig-
ure 5(c) the elapsed time between two observed large spikes
is around a multiple of 45-hour, which is also consistent with
its corresponding triggering kernel. Finally, for the event
of ‘Queensland Flooding’, the ‘Cyclone Yasi’ intensified to
a Category 3 cyclone on 01/31/2011, to a Category 4 on
02/01/2011, and to a Category 5 on 02/02/20117. These
critical events again coincide with the observed spikes in
the intensity function of the story in Figure 5(d). Because
the intensity functions depend on both the triggering ker-

4http://www.theguardian.com/film/filmblog/2011/
jan/13/batman-dark-knight-rises
5http://en.wikipedia.org/wiki/Space_Shuttle_
Endeavour
6http://en.wikipedia.org/wiki/Cyclone_Yasi
7http://en.wikipedia.org/wiki/Cyclone_Yasi

http://www.icwsm.org/data/
http://en.wikipedia.org/wiki/2011_Tucson_shooting
http://www.theguardian.com/film/filmblog/2011/jan/13/batman-dark-knight-rises
http://www.theguardian.com/film/filmblog/2011/jan/13/batman-dark-knight-rises
http://en.wikipedia.org/wiki/Space_Shuttle_Endeavour
http://en.wikipedia.org/wiki/Space_Shuttle_Endeavour
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http://en.wikipedia.org/wiki/Cyclone_Yasi
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Figure 5: Four example stories extracted by our model, including the ‘Tucson Shooting’ event, the movie of ‘Dark

Knight Rises’, Space Shuttle’s final mission and Queensland flooding disaster. For each story, we list the top 100 most

frequent words on the top row. The middle row shows the learned triggering kernel in the log-log scale, and the last

row presents the respective intensity functions along time.
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Figure 6: Scalability and time prediction in real world

news stream.

nels and the arriving rate of news articles, news reports of
emergent incidents and disasters tend to be concentrated in
time to form strong short-term clusters with higher magni-
tude of intensity values. In Figure 5, the intensity functions
of both ‘Tucson Shooting’ and ‘Queensland Flooding’ have
value greater than 20. In contrast, other types of stories in
entertainment and scientific explorations might have contin-
uous longer-term activities as more and more related details
get revealed. Overall, the ability of uncovering topic-specific
clusters with learned latent temporal dynamics of our model
provides a better and intuitive way to track the trend of each
evolving story in time.

Scalability. Figure 6(a) shows the scalability of our learn-
ing algorithm. Since the number of clusters grows logarith-

mically as the number of data points increases for CRP, we
expect the average time cost of processing each document
is keeping roughly constant after running for a long time
period. This is verified in Figure 6(a) where after the build-
up period, the average processing time per 10,000-document
keeps stable.

Prediction. Finally, we evaluate how well the learned
temporal model of each cluster can be used for predicting
the arrival of the next event. Starting from the 5,000th
document, we predict the possible arriving time of the next
document for the clusters with size larger than 100. Since
RCRP does not learn the temporal dynamics, we use the
average inter-event gap between two successive documents
as the predicted time interval between the most recent doc-
ument and the next one in the future. For DHP, we simulate
the next event time based on the learned triggering kernels
and the timestamps of the documents observed so far. We
treat the average of five simulated time as our final pre-
diction and report the cumulative mean absolute prediction
error in Figure 6(b) in the log-log scale. As more docu-
ments are observed, the prediction errors of both methods
decrease. However, the prediction performance of DHP is
even better from the very beginning when the number of
documents is still relatively small, showing that the Hawkes
model indeed can help to capture the underlying temporal
dynamics of the evolution of each cluster.



7. DISCUSSIONS
In addition to RCRP, several other well-known processes

can also be incorporated into the framework of DHP. For
instance, we may generalize the Pitman-Yor Process [23]
to incorporate the temporal dynamics. This simply brings
back the constant rate for each Hawkes Process. A small
technical issue arises from the fact that if we were to decay
the counts mk,t as in the RCRP, we would obtain negative
counts frommk,t−a, where a is the parameter of the Pitman-
Yor Process to increase the skewness of the cluster size dis-
tribution. However, this can be addressed, e.g., by clipping
the terms by 0 via max(0,mk,t). In this form we obtain a
model that further encourages the generation of new topics
relative to the RCRP. Moreover, The Distance-Dependent
Chinese Restaurant Process (DD-CRP) of [6] attempts to
address spatial interactions between events. This general-
izes the CRP and, with a suitable choice of distance func-
tion, can be shown to contain the RCRP as a special case.
The same notion can be used to infer spatial / logical inter-
actions between Hawkes Processes to obtain spatiotemporal
effects. That is, we simply use spatial excitation profiles to
model the rate of each event.

To conclude, we present the Dirichlet-Hawkes Process which
is a scalable probabilistic generative model inheriting the
advantages from both the Bayesian nonparametrics and the
Hawkes Process to deal with asynchronous streaming data
in an online manner. Experiments on both synthetic and
real world news data demonstrate that by explicitly mod-
eling the textual content and the latent temporal dynamics
of each cluster, it provides an elegant way to uncover top-
ically related documents and track their evolutions in time
simultaneously.
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