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Abstract

Information, disease, and influence diffuse over networks of entities in both nat-
ural systems and human society. Analyzing these transmission networks plays
an important role in understanding the diffusion processes and predicting future
events. However, the underlying transmission networks are often hidden and in-
complete, and we observe only the time stamps when cascades of events happen.
In this paper, we address the challenging problem of uncovering the hidden net-
work only from the cascades. The structure discovery problem is complicated by
the fact that the influence between networked entities is heterogeneous, which can
not be described by a simple parametric model. Therefore, we propose a kernel-
based method which can capture a diverse range of different types of influence
without any prior assumption. In both synthetic and real cascade data, we show
that our model can better recover the underlying diffusion network and drastically
improve the estimation of the transmission functions among networked entities.

1 Introduction
Networks have been powerful abstractions for modeling a variety of natural and artificial systems
that consist of a large collection of interacting entities. Due to the recent increasing availability
of large-scale networks, network modeling and analysis have been extensively applied to study
the spreading and diffusion of information, ideas, and even virus in social and information net-
works (see e.g., [17, 5, 18, 1, 2]). However, the process of influence and diffusion often occurs in
a hidden network that might not be easily observed and identified directly. For instance, when a
disease spreads among people, epidemiologists can know only when a person gets sick, but they
can hardly ever know where and from whom he (she) gets infected. Similarly, when consumers
rush to buy some particular products, marketers can know when purchases occurred, but they cannot
track in further where the recommendations originally came from [12]. In all such cases, we could
observe only the time stamp when a piece of information has been received by a particular entity,
but the exact path of diffusion is missing. Therefore, it is an interesting and challenging question
whether we can uncover the diffusion paths based just on the time stamps of the events.

There are many recent studies on estimating correlation or causal structures from multivariate time-
series data (see e.g., [2, 6, 13]). However, in these models, time is treated as discrete index and not
modeled as a random variable. In the diffusion network discovery problem, time is treated explic-
itly as a continuous variable, and one is interested in capturing how the occurrence of event at one
node affects the time for its occurence at other nodes. This problem recently has been explored by
a number of studies in the literature. Specifically, Meyers and Leskovec inferred the diffusion net-
work by learning the infection probability between two nodes using a convex programming, called
CONNIE [14]. Gomez-Rodriguez et al. inferred the network connectivity using a submodular opti-
mization, called NETINF [4]. However, both CONNIE and NETINF assume that the transmission
model for each pair of nodes is fixed with predefined transmission rate. Recently, Gomez-Rodriguez
et al. proposed an elegant method, called NETRATE [3], using continuous temporal dynamics
model to allow variable diffusion rates across network edges. NETRATE makes fewer number of
assumptions and achieves better performance in various aspects than the previous two approaches.
However, the limitation of NETRATE is that it requires the influence model on each edge to have a
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(a) Pair 1 (b) Pair 2 (c) Pair 3
Figure 1: The histograms of the interval between the time when a post appeared in one site and the time when
a new post in another site links to it. Dotted and dash lines are density fitted by NETRATE. The solid lines are
given by KernelCascade.

fixed parametric form, such as exponential, power-law, or Rayleigh distribution, although the model
parameters learned from cascades could be different.

In practice, the patterns of information diffusion (or a spreading disease) among entities can be quite
complicated and different from each other, going far beyond what a single family of parametric
models can capture. For example, in twitter, an active user can be online for more than 12 hours a
day, and he may instantly respond to any interesting message. However, an inactive user may just
log in and respond once a day. As a result, the spreading pattern of the messages between the active
user and his friends can be quite different from that of the inactive user.

Another example is from the information diffusion in a blogsphere: the hyperlinks between posts can
be viewed as some kind of information flow from one media site to another, and the time difference
between two linked posts reveal the pattern of diffusion. In Figure 1, we examined three pairs of
media sites from the MemeTracker dataset [3, 9], and plotted the histograms of the intervals between
the the moment when a post first appeared in one site and the moment when it was linked by a new
post in another site. We can observe that information can have very different transmission patterns
for these pairs. Parametric models fitted by NETRATE may capture the simple pattern in Figure 1(a),
but they might miss the multimodal patterns in Figure 1(b) and Figure 1(c). In contrast, our method,
called KernelCascade, is able to fit both data accurately and thus can handle the heterogeneity.

In the reminder of this paper, we present the details of our approach KernelCascade. Our key idea
is to model the continuous information diffusion process using survival analysis by kernelizing the
hazard function. We obtain a convex optimization problem with grouped lasso type of regularization
and develop a fast block-coordinate descent algorithm for solving the problem. The sparsity patterns
of the coefficients provide us the structure of the diffusion network. In both synthetic and real world
data, our method can better recover the underlying diffusion networks and drastically improve the
estimation of the transmission functions among networked entities.

2 Preliminary
In this section, we will present some basic concepts from survival analysis [7, 8], which are essential
for our later modeling. Given a nonnegative random variable T corresponding to the time when an
event happens, let f(t) be the probability density function of T andF (t) = Pr(T ≤ t) =

∫ t
0
f(x)dx

be its cumulative distribution function. The probability that an event does not happen up to time t
is thus given by the survival function S(t) = Pr(T ≥ t) = 1 − F (t). The survival function is a
continuous and monotonically decreasing function with S(0) = 1 and S(∞) = limt→∞ S(t) = 0.
Given f(t) and S(t), we can define the instantaneous risk (or rate) that an event has not happened
yet up to time t but happens at time t by the hazard function

h(t) = lim
∆t→0

Pr(t ≤ T ≤ t+ ∆t|T ≥ t)
∆t

=
f(t)

S(t)
. (1)

With this definition, h(t)∆t will be the approximate probability that an event happens in [t, t+ ∆t)
given that the event has not happened yet up to t. Furthermore, the hazard function h(t) is also
related to the survival function S(t) via the differential equation h(t) = − d

dt logS(t), where we
have used f(t) = −S′(t). Solving the differential equation with boundary condition S(0) = 1, we
can recover the survival function S(t) and the density function f(t) based on the hazard function
h(t), i.e.,

S(t) = exp

(
−
∫ t

0

h(x) dx

)
and f(t) = h(t) exp

(
−
∫ t

0

h(x) dx

)
. (2)
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(a) Hidden network (b) Node e gets infected at time t4 (c) Node e survives

Figure 2: Cascades over a hidden network. Solid lines in panel(a) represent connections in a hidden network.
In panel (b) and (c), filled circles indicate infected nodes while empty circles represent uninfected ones. Node
a, b, c and d are the parents of node e which got infected at t0 < t1 < t2 < t3 respectively and tended to infect
node e. In panel (b), node e survives given node a, b and c shown in green dash lines. However, it was infected
by node d. In panel (c), node e survives even though all its parents got infected.

3 Modeling Cascades using Survival Analysis
We use survival analysis to model information diffusion for networked entities. We will largely
follow the presentation of Gomez-Rodriguez et al. [3], but add clarification when necessary. We
assume that there is a fixed population of N nodes connected in a directed network G = (V, E).
Neighboring nodes are allowed to directly influence each other. Nodes along a directed path may
influence each other only through a diffusion process. Because the true underlying network is un-
known, our observations are only the time stamps when events occur to each node in the network.
The time stamps are then organized as cascades, each of which corresponds to a particular event.
For instance, a piece of news posted on CNN website about “Facebook went public” can be treated
as an event. It can spread across the blogsphere and trigger a sequence of posts from other sites
referring to it. Each site will have a time stamp when this particular piece of news is being discussed
and cited. The goal of the model is to capture the interplay between the hidden diffusion network
and the cascades of observed event time stamps.

More formally, a directed edge, j → i, is associated with an transmission function fji(ti|tj), which
is the conditional likelihood of an event happening to node i at time ti given that the same event has
already happened to node j at time tj . The transmission function attempts to capture the temporal
dependency between the two successive events for node i and j. In addition, we focus on shift-
invariant transmission functions whose value only depends on the time difference, i.e., fji(ti|tj) =
fji(ti − tj) = fji(∆ji) where ∆ji := ti − tj . Given the likelihood function, we can compute the
corresponding survival function Sji(∆ji) and hazard function hji(∆ji). When there is no directed
edge j → i, the transmission function and hazard function are both identically zeros, i.e., fji(∆ji) =
0 and hji(∆ji) = 0, but the survival function is identically one, i.e., Sji(∆ji) = 1. Therefore, the
structure of the diffusion network is reflected in the non-zero patterns of a collection of transmission
functions (or hazard functions).

A cascade is an N -dimensional vector tc := (tc1, . . . , t
c
N )> with i-th dimension recording the time

stamp when event c occurs to node i. Furthermore, tci ∈ [0, T c] ∪ {∞}, and the symbol∞ labels
nodes that have not been influenced during observation window [0, T c] — it does not imply that
nodes are never influenced. The ‘clock’ is set to 0 at the start of each cascade. A dataset can
contain a collection, C, of cascades

{
t1, . . . , t|C|

}
. The time stamps assigned to nodes by a cascade

induce a directed acyclic graph (DAG) by defining node j as the parent of i if tj < ti. Thus, it
is meaningful to refer to parents and children within a cascade [3], which is different from the
parent-child structural relation on the true underlying diffusion network. Since the true network is
inferred from many cascades (each of which imposes its own DAG structure), the inferred network
is typically not a DAG.

The likelihood `(tc) of a cascade induced by event c is then simply a product of all individual
likelihood `i(tc) that event c occurs to each node i. Depending on whether event c actually occurs
to node i in the data, we can compute this individual likelihood as:

Event c did occur at node i. We assume that once an event occurs at node i under the influence of
a particular parent j in a cascade, the same event will not happen again. In Figure 2(b), node e is
susceptible given its parent a, b, c and d. However, only node d is the first parent who infects node e.
Because each parent could be equally likely to first influence node i, the likelihood is just a simple
sum over the likelihoods of the mutually disjoint events that node i has survived from the influence
of all the other parents except the first parent j, i.e.,

`+i (tc) =
∑

j:tcj<t
c
i

fji(∆
c
ji)

∏
k:k 6=j,tck<t

c
i

Ski(∆
c
ki) =

∑
j:tcj<t

c
i

hji(∆
c
ji)

∏
k:tck<t

c
i

Ski(∆
c
ki). (3)
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Event c did not occur at node i. In other words, node i survives from the influence of all par-
ents (see Figure 2(c) for illustration). The likelihood is a product of survival functions, i.e.,

`−i (tc) =
∏
tj≤T c

Sji(T
c − tj). (4)

Combining the above two scenarios together, we can obtain the overall likelihood of a cascade tc by
multiplying together all individual likelihoods, i.e.,

`(tc) =
∏
tci>T

c

`−i (tc)

︸ ︷︷ ︸
uninfected nodes

×
∏
tci≤T c

`+i (tc)

︸ ︷︷ ︸
infected nodes

. (5)

Therefore, the likelihood of all cascades is a product of the these individual cascade likeli-
hoods, i.e. `({t1, . . . , t|C|}) =

∏
c=1,...,|C| `(t

c). In the end, we take the negative log of this likeli-
hood function and regroup all terms associated with edges pointing to node i together to derive

L({t1, . . . , t|C|}) = −
∑
i

∑
j

∑
{c|tcj<tci}

logS(∆c
ji) +

∑
{c|tci6T c}

log
∑
{tcj<tci}

h(∆c
ji)

 (6)

There are two interesting implications from this negative log likelihood function. First, the function
can be expressed using only the hazard and the survival function. Second, the function is decom-
posed into additive contribution from each node i. We can therefore estimate the hazard and survival
function for each node separately. Previously, Gomez-Rodriguez et al. [3] used parametric hazard
and survival functions, and they estimated the model parameters using the convex programming. In
contrast, we will instead formulate an algorithm using kernels and grouped parameter regularization,
which allows us to estimate complicated hazard and survival functions without overfitting.

4 KernelCascade for Learning Diffusion Networks
This section presents our kernel method for uncovering diffusion networks from cascades. Our key
idea is to kernelize the hazard function used in the negative log-likelihood in (6), and then estimate
the parameters using grouped lasso type of optimization.

4.1 Kernelizing survival analysis

Kernel methods are powerful tools for generalizing classical linear learning approaches to analyze
nonlinear relations. A kernel function, k : X ×X → R, is a real-valued positive definite symmetric
function iff. for any set of points {τ1, τ2, . . . , τm} ∈ X the kernel matrix K with entris Kls :=
k(τl, τs) is positive definite. We want to model heterogeneous transmission functions, fji(∆ji),
from j to i. Rather than directly kernelizing the transmission function, we kernelize the hazard
function instead, by assuming that it is a linear combination of m kernel functions, i.e.,

hji(∆ji) =

m∑
l=1

αljik(τl,∆ji), (7)

where we fix one argument of each kernel function, k(τl, ·), to a point τl in a uniform grid of m
locations in the range of (0,maxc T

c]. To achieve fully nonparametric modeling of the hazard
function, we can let m grow as we see more cascades. Alternatively, we can also place a non-
linear basis function on each time point in the observed cascades. For efficiency consideration,
we will use a fixed uniform grid in our later experiments. Since the hazard function is always
positive, we use positive kernel functions and require the weights to be positive, i.e., k(·, ·) ≥ 0
and αlji ≥ 0 to capture such constraint. For simplicity of notation, we will define vectors αji :=

(α1
ji, . . . , α

m
ji)
>, and k(∆ji) := (k(τ1,∆ji), . . . , k(τm,∆ji))

>. Hence, the hazard function can be
written as hji(∆ji) = α>jik(∆ji).

In addition, the survival function and likelihood function can also be kernelized based on their
respective relation with the hazard function in (2). More specifically, let gl(∆ji) :=

∫∆ji

0
k(τl, x)dx

and the corresponding vector g(∆ji) := (g1(∆ji), . . . , gm(∆ji))
>. We then can derive

Sji(∆ji) = exp
(
−α>jig(∆ji)

)
and fji(∆ji) =

(
α>jik(∆ji)

)
exp

(
−α>jig(∆ji)

)
. (8)

In the formulation, we need to perform integration over the kernel function to compute gl(∆ji). This
can be done efficiently for many kernels, such as the Gaussian RBF kernel, the Laplacian kernel,
the Quartic kernel, and the Triweight kernel. In later experiments, we mainly focus on the Gaussian
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RBF kernel, k(τl, τs) = exp(−‖τl − τs‖2/(2σ2)), and derive a closed form solution for gl(∆ji) as

gl(∆ji) =

∫ ∆ji

0

k(τl, x) dx =

√
2πσ

2

(
erfc

(
τl −∆ji√

2σ

)
− erfc

(
τl√
2σ

))
, (9)

where erfc(t) := 2√
π

∫∞
t
e−x

2

dx is the error function. Yet, our method is not limited to the particu-
lar RBF kernel. If there is no closed form solution for the one-dimensional integration, we can use a
large number of available numerical integration methods for this purpose [15]. We note that given a
dataset, both the vector k(∆ji) and g(∆ji) need to be computed only once as a preprocessing, and
then can be reused in the algorithm.

4.2 Estimating sparse diffusion networks

Next we plug in the kernelized hazard function and survival function into the likelihood of cascades
in (6). Since the negative log likelihood is separable for each node i, we can optimize the set of
variables {αji}Nj=1 separately. As a result, the negative log likelihood for the data associated with
node i can be estimated as

Li
(
{αji}Nj=1

)
=
∑
j

∑
{c|tcj<tci}

α>jig(∆c
ji)−

∑
{c|tci6T c}

log
∑
{tcj<tci}

α>jik(∆c
ji). (10)

A desirable feature of this function is that it is convex in its arguments, {αji}Nj=1, which allows us
to bring various convex optimization tools to solve the problem efficiently.

In addition, we want to induce a sparse network structure from the data and avoid overfitting.
Basically, if the coefficients αji = 0, then there is no edge (or direct influence) from node j
to i. For this purpose, we will impose grouped lasso type of regularization on the coefficients
αji, i.e., (

∑
j ‖αji‖)2 [16, 19]. Grouped lasso type of regularization has the tendency to select a

small number of groups of non-zero coefficients but push other groups of coefficients to be zero.
Overall, the optimization problem trades off between the data likelihood term and the group sparsity
of the coefficients

min
{αji}Nj=1

Li
(
{αji}Nj=1

)
+ λ

(∑
j

‖αji‖
)2

, s.t. αji ≥ 0, ∀j, (11)

where λ is the regularization parameter. After we obtain a sparse solution from the above opti-
mization, we obtain partial network structures, each of which centers around a particular node i.
We can then join all the partial structures together and obtain the overall diffusion network. The
corresponding hazard function along each edge can also be obtained from (8).

4.3 Optimization

We note that (11) is a nonsmooth optimization problem because of the regularizer. There are
many ways to solve the optimization problem, and we will illustrate this using a simple algo-
rithm originating from multiple kernel learning [16, 19]. In this approach, an additional set of
variables are introduced to turn the optimization problem into a smooth optimization problem.
More specifically, let γi ≥ 0 and

∑
j γj = 1. Then using Cauchy-Schwartz inequality, we have

(
∑
j ‖αji‖)2 = (

∑
j(‖αji‖ /γ

1/2
j )γ

1/2
j )2 ≤ (

∑
j ‖αji‖

2
/γj)(

∑
j γj) =

∑
j ‖αji‖

2
/γj , where

the equality holds when

γj = ‖αji‖ /
∑

j
‖αji‖ . (12)

With these additional variables, γj , we can solve an alternative smooth optimization problem, which
is jointly convex in both αji and γj

min
{αji,γj}Nj=1

Li
(
{αji}Nj=1

)
+ λ

∑
j

‖αji‖2

γj
, s.t. αji ≥ 0, γj ≥ 0,

∑
j

γj = 1, ∀j. (13)

There are many ways to solve the convex optimization problem in (13). In this paper, we used
a block coordinate descent approach alternating between the optimization of αji and γj . More
specifically, when we fixed αji, we can obtain the best γj using the closed form formula in (12);
when we fixed γj , we can optimize over αji using, e.g., a projected gradient method. The overall
algorithm pseudocodes are given in Algorithm 1. Moreover, we can speed up the optimization in
three ways. First, because the optimization is independent for each node i, the overall process can
be easily parallelized into N separate sub-problems. Second, we can prune the possible nodes that
were never infected before node i in any cascade where i was infected. Third, if we further assume
that all the edges from the same node belong to the same type of models, especially when the sample
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size is small, theN edges could share a common set ofm parameters, and thus we can only estimate
N ×m parameters in total.

Algorithm 1: KernelCascade
Initialize the diffusion network G to be empty;
for i = 1 to N do

Initialize {αji}Nj=1 and {γj}Nj=1;
repeat

Update {αji}Nj=1 using projected gradient method with {γj}Nj=1 from last update;
Update {γj}Nj=1 using formula (12) with {αji}Nj=1 from last update;

until convergence;
Extract the sparse neighborhood N (i) of node i from nonzero αji;
Join N (i) to the diffusion network G

5 Experimental Results
We will evaluate KernelCascade on both realistic synthetic networks and real world networks. We
compare it to NETINF [4] and NETRATE [3], and we show that KernelCascade can perform signif-
icantly better in terms of both recovering the network structures and the transmission functions.

5.1 Synthetic Networks

Network generation. We first generate synthetic networks that mimic the structural properties of
real networks. These synthetic networks can then be used for simulation of information diffusion.
Since the latent networks for generating cascades are known in advance, we can perform detailed
comparisons between various methods. We use Kronecker generator [10] to examine two types of
networks with directed edges: (i) the core-periphery structure [11], which mimics the information
diffusion process in real world networks, and (ii) the Erdős-Rényi random networks.

Influence function. For each edge j → i in a network G, we will assign it a mixture of two Rayleigh
distributions: fji(t|θ, a1, b1, a2, b2) = θR1(t|a1, b1) + (1 − θ)R2(t|a2, b2) where Ri(t|ai, bi) =

2
t−ai

(
t−ai
bi

)2

exp

(
−
(
t−ai
bi

)2
)
, t > ai, and θ ∈ (0, 1) is a mixing proportion. We examine

three different parameter settings for the transmission function: (1) all edges in network G have
the same transmission function p(t) = f(t|0.5, 10, 1, 20, 1); (2) all edges in network G have the
same transmission function q(t) = f(t|0.5, 0, 1, 20, 1); and (3) all edges in network G are uniformly
randomly assigned to either p(t) or q(t).

Cascade generation. Given a network G and the collection of transmission functions fji for each
edge, we generate a cascade from G by randomly choosing a node of G as the root of the cascade.
The root node j is then assigned to time stamp tj = 0. For each neighbor node i pointed by j,
its event time ti is sampled from fji(t). The diffusion process will continue by further infecting
the neighbors pointed by node i in a breadth-first fashion until either the overall time exceed the
predefined observation time window T c or there is no new node being infected. If a node is infected
more than once by multiple parents, only the first infection time stamp will be recorded.

Experiment setting and evaluation metric. We consider a combination of two network topolo-
gies (i)-(ii) with three different transmission function settings (1)-(3), which results in six different
experimental settings. For each setting, we randomly instantiate the network topologies and trans-
mission functions for 10 times and then vary the number of cascades from 50, 100, 200, 400, 800 to
1000. For KernelCascade, we use a Gaussian RBF kernel. The kernel bandwidth σ is chosen using
median pairwise distance between grid time points. The regularization parameter is chosen using
two fold cross-validation. NETINF requires the desired number of edges as input, and we give it an
advantage and supply the true number of edges to it. For NETRATE, we experimented with both
exponential and Rayleigh transmission function.

We compare different methods in terms of (1) F1 score for the network recovery. F1 :=
2·precision·recall
precision+recall , where precision is the fraction of edges in the inferred network that also present in
the true network and recall is the fraction of edges in the true network that also present in the inferred
network; (2) KL divergence between the estimated transmission function and the true transmission
function, averaged over all edges in a network; (3) the shape of the fitted transmission function
compared to the true transmission function.
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Figure 3: F1 Scores for network recovery.
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Figure 4: KL Divergence between the estimated and the true transmission function.

F1 score for network recovery. From Figure 3, we can see that in all cases, KernelCascade per-
forms consistently and significantly better than NETINF and NETRATE. Furthermore, its perfor-
mance also steadily increases as we increase the number of cascades, and finally KernelCascade re-
covers the entire network with around 1000 cascades. In contrast, the competitor methods seldom
fully recover the entire network given the same number of cascades. We also note that the perfor-
mance of NETRATE is very sensitive to the choice of the transmission function (exponential vs.
Rayleigh). For instance, depending on the actual data generating process, the performance of NE-
TRATE with Rayleigh model can vary from the second best to the worst.

KL divergence for transmission function. Besides better network recovery, KernelCascade also
estimates the transmission function better. In all cases we experimented, KernelCascade leads to
drastic improvement in recovering the transmission function (Figure 4). We also observe that as we
increase the number of cascades, KernelCascade adapts better to the actual transmission function. In
contrast, the performance of NETRATE with exponential model does not improve with increasing
number of cascades, since the parametric model assumption is incorrect. We note that NETINF does
not recover the transmission function, and hence there is no corresponding curve in the plot.

Visualization of the transmission function. We also visualize the estimated transmission function
for an edge from different methods in Figure 5. We can see that KernelCascade captures the essential
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(a) An edge with transmission function p(t) (b) An edge with transmission function q(t)
Figure 5: Estimated transmission function of a single edge based on 1000 cascades against the true
transmission function (blue curve).

(a) KernelCascade (b) NETINF (c) NETRATE
Figure 6: Estimated network of top 32 sites. Edges in grey are correctly uncovered, while edges
highlighted in red are either missed or estimated falsely.

features of the true transmission function, i.e., bi-modal behavior, while the competitor methods miss
out the important statistical feature completely.

5.2 Real world dataset

Finally, we use the MemeTracker dataset [3] to compare NETINF, NETRATE and KernelCascade.
In this dataset, the hyperlinks between articles and posts can be used to represent the flow of in-
formation from one site to another site. When a site publishes a new post, it will put hyperlinks to
related posts in some other sites published earlier as its sources. Later as it also becomes “older”, it
will be cited by other newer posts as well. As a consequence, all the time-stamped hyperlinks form
a cascade for particular piece of information (or event) flowing among different sites. The networks
formed by these hyperlinks are used to be the ground truth. We have extracted a network consisting
of top 500 sites with 6,466 edges and 11,530 cascades from 7,181,406 posts in a month, and we
want to recover the the underlying networks. From Table 1, we can see that KernelCascade achieves
a much better F1 score for network recovery compared to other methods. Finally, we visualize the
estimated sub-network structure for the top 32 sites in Figure 6. By comparison, KernelCascade has
a relatively better performance with fewer misses and false predictions.

Table 1: Network recovery results from MemeTracker dataset.
methods precision recall F1 predicted edges
NETINF 0.62 0.62 0.62 6466

NETRATE(exp) 0.93 0.23 0.37 1600
KernelCascade 0.79 0.66 0.72 5368

6 Conclusion
In this paper, we developed a flexible kernel method, called KernelCascade, to model the latent dif-
fusion processes and to infer the hidden network with heterogeneous influence between each pair
of nodes. In contrast to previous state-of-the-art, such as NETRATE, NETINF and CONNIE, Ker-
nelCascade makes no restricted assumption on the specific form of the transmission function over
network edges. Instead, it can infer it automatically from the data, which allows each pair of nodes to
have a different type of transmission model and better captures the heterogeneous influence among
entities. We obtain an efficient algorithm and demonstrate experimentally that KernelCascade can
significantly outperforms previous state-of-the-art in both synthetic and real data. In future, we will
explore the combination of kernel methods, sparsity inducing norms and other point processes to
address a diverse range of social network problems.
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