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Abstract

Analyzing the spreading patterns of memes with
respect to their topic distributions and the under-
lying diffusion network structures is an impor-
tant task in social network analysis. This task in
many cases becomes very challenging since the
underlying diffusion networks are often hidden,
and the topic specific transmission rates are un-
known either. In this paper, we propose a con-
tinuous time model, TOPICCASCADE, for topic-
sensitive information diffusion networks, and in-
fer the hidden diffusion networks and the topic
dependent transmission rates from the observed
time stamps and contents of cascades. One at-
tractive property of the model is that its param-
eters can be estimated via a convex optimization
which we solve with an efficient proximal gra-
dient based block coordinate descent (BCD) al-
gorithm. In both synthetic and real-world data,
we show that our method significantly improves
over the previous state-of-the-art models in terms
of both recovering the hidden diffusion networks
and predicting the transmission times of memes.

1 INTRODUCTION

Ideas, tweets, styles, and online advertisements spread
from person to person within social networks consisting of
millions of entities and edges. Analyzing the diffusion be-
haviors of memes with respect to network structures and
their topic distributions is an important task in social net-
work analysis. A better understanding of the temporal dy-
namics of diffusion networks can potentially provide us a
better prediction of the occurrence time of a future event.
For instance, in e-commerce, Ad-providers would like to
know how to make their advertisements reach a large num-
ber of target consumers in a very short term. To achieve this
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Figure 1: The fitted Rayleigh distributions of the interval
between the time when a post appeared in one site and
the time when a new post in another site links to it (trans-
mission time). Posts of different topics have a different
spreading rate, reflected in the different shapes of the fitted
Rayleigh distribution.

goal, they have to figure out quantitatively the spreading
speed of different advertisements among different commu-
nities. Outdoor equipment promotions spread faster within
a community of mountaineering club than within a politi-
cal group. In contrast, messages from political campaign
tend to diffuse faster in the latter. Understanding the topic
specific temporal dynamics will help marketers expand the
influence of their ads and ideas, or reduce the negative im-
pact of rumors and gossips.

However, the problem of analyzing topic dependent infor-
mation diffusion can be complicated by the fact that the
diffusion network is often hidden, and the topic specific
transmission rates are also unknown. For instance, when
consumers rush to buy some particular products, marketers
can know when purchases are made, but they cannot track
where the recommendations originated. When an online
post mentions a piece of news, the blogger may carelessly
or intentionally miss the links to the sources. In all such
cases, we observe only the temporal information together
with the possible content when a piece of information has
been received by a particular entity, but the exact path of
transmission is not observed. The complexity of topic spe-
cific transmission patterns is well illustrated by our earlier
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examples of outdoor equipment promotions and political
campaign messages. Another more quantitative example
can be found in Figure 1, where we examine a pair of media
sites from the MemeTracker dataset [4, 9] and plot the fit-
ted Rayleigh models to the transmission time of three types
of posts corresponding to the topic of information technol-
ogy, economy, and military, respectively. It clearly shows
the existence of three different modes, indicating that posts
on information technology spread much faster than those of
economy and military. As a consequence, this phenomenon
leads to a multimodal distribution of times, which cannot
be easily captured by existing models, not to mention the
incorporation of contents into a diffusion model.

In this paper, we propose a probabilistic model, referred to
as TOPICCASCADE, to capture the diffusion of memes with
different topics through an underlying network. The key
idea is to explicitly model the transmission times as contin-
uous random variables and modulate the transmission like-
lihood by the topic distribution of each meme. The sparsity
pattern of the model parameters provides us the structure
of the diffusion network, while the parameters capture the
degree of modulation of topics on the information transmis-
sion rate. Moreover, based on a set of sample cascades, we
have designed an efficient proximal gradient based block
coordinate decent algorithm to recover the diffusion net-
work and model parameters. We applied TOPICCASCADE
to both synthetic and real world data, and it better recov-
ers the underlying diffusion networks and significantly im-
proves the accuracy of predicting the transmission time be-
tween networked entities.

2 RELATED WORK

A number of studies in the literature attempted to learn
causal structures from multivariate time series (e.g., [3, 6,
12]). However, these models treated time as discrete steps
rather than a continuous random variable.

Recently, researchers started modeling information diffu-
sion using continuous time models. For instance, Mey-
ers and Leskovec [13] proposed a model called CON-
NIE which inferred the diffusion network by learning the
pairwise infection probability using convex programming.
The optimal diffusion network topology is then inferred
from the infection probability matrix. Gomez-Rodriguez et
al. [5] proposed a model called NETINF which used sub-
modular optimization to find the optimal network connec-
tivity by constructing candidate subgraphs. However, both
CONNIE and NETINF assumed that the transmission rate
is fixed across the network as a predefined constant.

Subsequently, Gomez-Rodriguez et al. [4] proposed an ele-
gant model called NETRATE using continuous time model
which allows variable diffusion rates across different edges.
NETRATE achieved better modelings in various aspects
compared to previous two approaches. However, NE-

TRATE ignored the contents of memes and assumed that
all memes are transmitted with the same rate, which can
deviate far from reality as illustrated in Figure 1. Wang
et al. [17] proposed a model called MoNET which consid-
ered additional features of nodes in addition to time stamps.
The major difference of our model from MoNET is that we
explicitly model and learn the influence of meme contents
on information diffusion, while MoNET used a predefined
similarity measure between meme contents.

3 PRELIMINARY

In this section, we present basic concepts from survival
analysis [7, 8], which are essential for our later model-
ing. We first define a nonnegative random variable T to
be the time when an event happens. Let f(t) be the prob-
ability density function of T , and F (t) = Pr(T ≤ t) =∫ t

0
f(x)dx is thus its cumulative distribution function. The

survival function S(t) gives the probability that an event
does not happen up to time t,

S(t) = Pr(T ≥ t) = 1− F (t) =

∫ ∞
t

f(x) dx. (1)

Thus, S(t) is a continuous and monotonically decreasing
function with S(0) = 1 and S(∞) = limt→∞ S(t) = 0.

Given f(t) and S(t), the hazard function h(t) is the in-
stantaneous rate that an event will happen within a small
interval just after time t given it has not happened yet up to
time t,

h(t) = lim
∆t→0

Pr(t ≤ T ≤ t+ ∆t|T ≥ t)
∆t

=
f(t)

S(t)
. (2)

The hazard function h(t) is related to the survival func-
tion S(t) via the differential equation h(t) = − d

dt logS(t),
where we have used f(t) = −S′(t). Solving the differen-
tial equation with boundary condition S(0) = 1, we can
represent S(t) and f(t) solely from the hazard function
h(t), i.e.,

S(t) = exp

(
−
∫ t

0

h(x) dx

)
, and f(t) = h(t)S(t). (3)

4 MODELING CASCADES BY
SURVIVAL ANALYSIS

We apply the survival analysis methods to model the in-
formation diffusion processes by following the work of
Gomez-Rodriguez et al. [4]. We assume that within a di-
rected network G = (V, E) with N nodes, memes transfer
directly between neighboring nodes and will reach the far
away nodes only through a diffusion process. Because the
true underlying network is unknown, our observations in-
clude only the temporal information when events occur and
the content information of memes. The temporal informa-
tion is then organized as cascades, each of which corre-
sponds to a diffusion of a particular event. For instance, an
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Figure 2: Cascades over a hidden network. Dot lines in panel (a) are connections in a hidden network. In panel (b) and (c),
events occur to a, b, c and d at t0 < t1 < t2 < t3, respectively. In panel (b), node e was influenced by node d and survived
from a, b, and c. In panel (c), node e survived from the influence of all its parents.

event could be a tweet saying that “Curiosity Rover suc-
cessfully lands on the Mars”. This tweet spreads over the
social network by triggering a sequence of tweets and re-
tweets that later refer to it. During the diffusion process,
each tweet will have a time stamp recording when it is
created. Therefore, a cascade can be denoted as an N -
dimensional vector tc := (tc1, . . . , t

c
N )> with i-th dimen-

sion recording the time stamp when event c occurs to node
i, and tci ∈ [0, T c]∪{∞}. The symbol∞ labels nodes that
have not been reached in a cascade during an observation
window [0, T c]. The ‘clock’ is set to 0 at the start of each
cascade. A dataset usually consists of a collection, C, of
cascades

{
t1, . . . , t|C|

}
. Within a cascade c, if tcj < tci , we

say node j is the parent of node i. Note that this parents
and children within a cascade [4] relation is different from
the parent-child structural relation on the true underlying
diffusion network. In Figure 2(a), only b and d are the par-
ents of e in topology. Yet, in Figure 2(b), all the nodes from
a to d are the parental nodes of e in the given cascade.

Moreover, each directed edge, j → i, is associated with a
transmission function fji(ti|tj), which is the conditional
likelihood of an event happening to node i at time ti given
that the same event has already happened to node j at time
tj . It captures the temporal pattern between two successive
events from node j to i. Here, we focus on shift-invariant
transmission functions whose value only depends on the
time difference, i.e., fji(ti|tj) = fji(ti − tj) = fji(∆ji)
where ∆ji := ti − tj . If there is no edge from j to i, we
will have fji(∆ji) = 0 and hji(∆ji) = 0. Therefore, the
structure of the diffusion network is reflected in the non-
zero patterns of a collection of transmission functions (or
hazard functions). The likelihood `(tc) of a cascade in-
duced by event c is then a product of all individual likeli-
hood `i(tc) whether event c occurs to each node i or not.

If event c occurs to node i, we assume that it happens only
under the influence of the first parent and will not happen
again. In Figure 2(b), node e is susceptible to its parent a,
b, c and d. Yet, only node d is the first parent who actu-
ally influences node e, in other words, node e first gets the
meme from node d and survives from the influence of all
the other nodes. Because each parent is equally likely to be

the first parent, the likelihood is derived as

`+i (tc) =
∑

j:tcj<t
c
i

fji(∆
c
ji)

∏
k:k 6=j,tck<t

c
i

Ski(∆
c
ki)

=
∑

j:tcj<t
c
i

hji(∆
c
ji)

∏
k:tck<t

c
i

Ski(∆
c
ki), (4)

where we have used relation fji(·) = hji(·)Sji(·).

If event c does not occur to node i, node i survives from
the influence of all parents (see Figure 2(c) for illustration).
The likelihood is a product of survival functions, i.e.,

`−i (tc) =
∏
tj≤T c

Sji(T
c − tj). (5)

Combining the above two scenarios together, we can obtain
the overall likelihood of a cascade tc, i.e.,

`(tc) =
∏
tci>T

c

`−i (tc)×
∏
tci≤T c

`+i (tc). (6)

Thus, the likelihood of all cascades is a product of these
individual cascade likelihoods, i.e. `({t1, . . . , t|C|}) =∏
c=1,...,|C| `(t

c). In the end, we take the negative log of
this likelihood function and regroup all terms associated
with edges pointing to node i together to derive

L({t1, . . . , t|C|}) = −
∑
i

∑
j

∑
{c|tcj<tci}

logSji(∆
c
ji)

−
∑
i

∑
{c|tci<T c}

log
∑
{tcj<tci}

hji(∆
c
ji) (7)

There are two important implications from this negative log
likelihood function. First, the function can be expressed
using only the hazard and the survival function. Second,
both the hazard function and the survival function are fixed
between the same pair of nodes j → i regardless of the
content features of the memes sent from node j.

5 TOPIC-SENSITIVE DIFFUSION
MODEL

In this section, we will present our diffusion model which
takes into account the topic dependent transmission rates
of memes. The basic idea is to modulate the hazard func-
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tion of a Rayleigh distribution by the topic distributions
of memes. Then we will infer the parameters by maxi-
mizing the likelihood of observed cascades with grouped
lasso type of regularization. Furthermore, we will design
an efficient optimization algorithm using a proximal gradi-
ent based block coordinate descent method.

5.1 Topic Modulated Rayleigh Distribution

The Rayleigh distribution is often used in epidemiology
and survival analysis (e.g., [7, 8, 16]). The corresponding
probability density function first increases rapidly and then
decays to zero. As a consequence, it is well-suited to cap-
ture the phenomenon that there is a typical response time
for posts of a particular topic, and it is less likely the re-
sponse time is very different from the mode. Given a pair
of nodes j and i, the density, hazard and survival functions
of the Rayleigh distribution are

fji(∆ji) = αji ·∆ji · exp

(
−1

2
· αji ·∆2

ji

)
, (8)

hji(∆ji) = αji ·∆ji, (9)

Sji(∆ji) = exp

(
−1

2
· αji ·∆2

ji

)
, (10)

where ∆ji = tj − ti > 0, and αji ∈ R+ is the trans-
mission rate from node j to i. We note that this standard
Rayleigh distribution does not take into account the poten-
tial influence of topics on the transmission rate. We want
to take that into account and allow αji to be modulated by
the topics of a meme.

More specifically, suppose that node j just published a
meme m

tj
j at time tj . We represent each meme as a

topic vector in the canonical K-dimensional simplex, in
which each component is the weight of a topic. That is
m
tj
j := (m1, . . . ,mK)> and

∑
imi = 1 and mi ∈ [0, 1].

Such a representation can be readily obtained from the text
of a meme using standard topic model tools such as Latent
Dirichlet Allocation [2]. To incorporate the topic informa-
tion of the topic, mtj

j , we assume that αji is a nonnegative
combination of the entries in m

tj
j , i.e.

αji =

K∑
l=1

αljiml, (11)

where αlji > 0 ensures that the hazard function hmji(∆ji) =

∆ji

∑K
l=1 α

l
jiml is nonnegative. For notation simplicity,

let the vector αααji := (α1
ji, . . . , α

K
ji )
>, and we define the

topic modulated hazard function as
hmji(∆ji) = ∆jiααα

>
jim

tj
j (12)

For the modulated hazard function hmji(∆ji), the coeffi-
cients vector αααji can be interpreted as the topic preference
of the diffusion channel from node j to i. For each meme
m
tj
j published by node j, hmji(∆ji) uniquely determines its

transmission pattern. If mtj
j is compatible with the topic

preference encoded in αααji, then their inner product will be
large, and this meme will have a high transmission rate;
otherwise, the product will be small, and the transmission
will be slow and even impossible.

The flexibility of the topic modulated hazard function
in (12) captures our previous example of the outdoor equip-
ment promotions. Within a mountaineering club, the gen-
eral preference vectorαααji mainly concentrates on the topics
related to sport activities. The m

tj
j of the outdoor equip-

ment promotions will have a larger inner product with αααji
than that of a political campaign message, so the related
sport ad will spread faster along this edge. Based on their
respective relations with the hazard function in (3), the
topic modulated survival and density function become

Smji (∆ji) = exp

(
−1

2
ααα>jim

tj
j ∆2

ji

)
, (13)

fmji (∆ji) = ααα>jim
tj
j ∆ji exp

(
−1

2
ααα>jim

tj
j ∆2

ji

)
. (14)

5.2 Parameter Estimation

Next we plug in the modulated hazard function (12) and
survival function (13) back into the negative log-likelihood
(7). Because the negative log likelihood is separable for
each node i, we can optimize the set of variables {αji}Nj=1

separately. As a result, the negative log likelihood for the
data associated with node i can be estimated as

Li
(
{αji}Nj=1

)
=
∑
j

∑
{c|tcj<tci}

(∆c
ji)

2

2
·ααα>ji ·m

tcj
j

−
∑

{c|tci<T c}
log

∑
{tck<tci}

∆c
ki ·ααα>ki ·m

tck
k . (15)

A desirable feature of this negative log-likelihood function
is that it is convex in the arguments, {αji}Nj=1. The con-
vexity will allow us to find the global minimum solution ef-
ficiently using various convex optimization tools. We also
assume that the terms with log(·) is larger than log(ε) with
small constant ε > 0. It means that each node has at least
one parent in the diffusion network.1

Moreover, we want to induce a sparse network structure
from the data and avoid overfitting. If the coefficients
αji = 0, then there is no edge (or direct transmission)
from node j to i. For this purpose, we will impose
grouped lasso type of regularization on the coefficients
αji, i.e., (

∑
j ‖αji‖2) [14, 18, 19]. Grouped lasso type

of regularization has the tendency to select a small number
of salient groups of non-zero coefficients and push other
groups of potentially noisy coefficients to zero. Then we

1To handle the case of isolated nodes, we can introduce a base
hazard rate b into equation (12).
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have the following optimization problem

min
{αji}Nj=1

Li
(
{αji}Nj=1

)
+ λ
(∑

j
‖αji‖2

)
(16)

s.t. αji ≥ 0, ∀j ∈ {1, . . . , N}
where λ is a regularization parameter which trades off be-
tween the data likelihood and the group sparsity of the co-
efficients. After we obtain a sparse solution from the above
optimization, we obtain the model parameters αji and par-
tial network structures, each of which centers around a par-
ticular node i. We can then join all the partial structures
together and obtain the overall diffusion network.

5.3 Optimization

We note that the optimization problem in (16) is a nons-
mooth but separable minimization problem, which can be
difficult to optimize using standard methods. We will use
the following block coordinate descent framework [15] to
efficiently find a solution. At each iteration, we solve (16)
with respect to one αji variable while fixing other vari-
ables, i.e.,

For k = 1, . . . , kmax

αk+1
1i = argmin

v1≥0
L1i(v1) + λ ‖v1‖2

αk+1
2i = argmin

v2≥0
L2i(v2) + λ ‖v2‖2

. . .

αk+1
Ni = argmin

vN≥0
LNi(vN ) + λ ‖vN‖2

(17)

where the function Lji(vj) is defined by fixing all other
coordinates to their current values in the iteration, i.e.,

Lji(vj) := Li
(
αk+1

1i , ...,αk+1
(j−1)i,vj ,α

k
(j+1)i, ...,α

k
Ni

)
.

Essentially, the optimization is carried out by solving a se-
quence of subproblems each involving only one αji. Since
Li
(
{αji}Nj=1

)
is sufficiently smooth convex fitting terms

and
∑
j ‖αji‖2 is non-differentiable but separable regular-

ization terms, the global convergence of the above algo-
rithm is guaranteed by results from [15].

However, it can still be difficult to find a solution for
each subproblem directly due to the non-smooth regular-
izer. Thus we will use a proximal gradient method for these
subproblems (e.g., [1]). First, the gradient of Lji with re-
spect to vj can be readily calculated as

∇Lji(vj) :=
∂Lji(vj)
∂vj

=
∑

{c|tcj<tci}

(∆c
ji)

2

2
·mtcj

j

−
∑

{c|tci<T c}

∆c
ji ·m

tcj
j

Acj + ∆c
ji · v>j m

tcj
j

(18)

where the term Acj is defined as

Acj =
∑

l<j,tcl<t
c
i

∆c
li·(αk+1

li )>m
tcl
l +

∑
l>j,tcl<t

c
i

∆c
li·(αkli)>m

tcl
l .

Second, to use the proximal gradient method, the gradient
with respective to the component vj has to be Lipschitz
continuous satisfying the condition

‖∇Lji(vj)−∇Lji(v′j)‖2 6 L‖vj − v′j‖2 (19)
for some constant L < ∞. This condition can be read-
ily satisfied by our model, since the Hessian of Lji(vj) is
bounded, i.e.,

∂2Lji(vj)
∂v2

j

=
∑

{c|tci<T c}

m
tcj
j · (m

tcj
j )> · (∆c

ji)
2(

Acj + ∆c
ji · v>j ·m

tcj
j

)2 ≤ L.

We will use iterative procedure to solve each subproblem
αk+1
ji = argmin

vj≥0
Lji(vj) + λ ‖vj‖2 ,

and more specifically, we will minimize a sequence of
quadratic approximation to Lji(vj)

Lsji(vj ,v′j) = Lji(v′j) +
〈
∇Lji(v′j),vj − v′j

〉
+

1

2

〈
vj − v′j ,Dv′

j
(vj − v′j)

〉
,

where Dv′
j

is a positive definite matrix that dominates

the Hessian
∂2Lji(v

′
j)

∂(v′
j)2 . This surrogate function has the

following useful properties: Lsji(vj ,vj) = Lji(vj) and
Lsji(vj ,v′j) > Lji(vj), ∀v,v′j ≥ 0. As a consequence,
we find αk+1

ji by the following iterative procedure

v′j ← αkji

For l = 1, . . . , lmax

v′j ← argmin
vj≥0

Lsji(vj ,v′j) + λ‖vj‖2

αk+1
ji ← v′j

(20)

If Dαk
ji

= L · I , then we only need to solve the following
proximal mapping

v′j ← argmin
vj≥0

L

2

∥∥∥∥vj − (v′j − ∇Lji(v′j)L

)∥∥∥∥2

2

+ λ‖vj‖2,

which has a closed form solution

v′j ←
(v)+

‖v‖2

(
‖v‖2 −

λ

L

)
+

, (21)

where v = v′j − 1
L∇Lji(v

′
j) and (·)+ simply sets the neg-

ative coordinates of its argument to ‘zero’. (see [20] and
reference therein for more details). If v′j = 0 at some point
in the iteration, we just stop updating it and directly assign
zeros to αk+1

ji .

The overall pseudo codes are given in Algorithm 1. Note
that to guarantee convergence, we need to repeat (21) sev-
eral times. But empirically we did not observe significant
difference if we just set lmax to 1. Furthermore, because
the optimization is independent for each node i, the outer
loop process can be easily parallelized intoN separate sub-
problems. Meanwhile, we can prune the possible nodes
that never appeared before node i in any cascade indicating
that j is not a possible parent of i, which is at least shown
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from the data. In the end, if we further assume that all the
edges from the same node have similar topic preference, es-
pecially when the sample size is small, the N edges could
share a common set of K parameters, and thus we can only
estimate N ×K parameters in total.

Algorithm 1: TOPICCASCADE

Input: cascades
{
t1, ..., t|C|

}
, memes {mtcj

j }
c=1...|C|
j=1...N

Output: {αji}j,i∈{1,...,N}
for i = 1, . . . , N do

Initialize {α1
ji}Nj=1 as uniform vectors;

for k = 1, . . . , kmax do
for j = 1, . . . , N do

v = αkji − 1
L∇Lji(α

k
ji);

αk+1
ji = (v)+

‖v‖2

(
‖v‖2 − λ

L

)
+

;

6 EXPERIMENTAL RESULTS

We will evaluate TOPICCASCADE on both realistic syn-
thetic networks and real world networks. We com-
pare it to the state-of-the-art method NETRATE [4] and
MoNET [17], and then we show that TOPICCASCADE can
perform significantly better in terms of both recovering the
network structures and predicting the transmission time.

6.1 Synthetic Networks

We first evaluate our method in synthetic datasets where we
know the true parameters to study accuracy of the estimated
parameter by TOPICCASCADE.

Network Generation. We generate synthetic networks
that mimic the structural properties of real networks. These
synthetic networks can then be used for simulation of infor-
mation diffusion. Since the latent networks for generating
cascades are known in advance, we can perform detailed
comparisons between various methods. We use Kronecker
generator [10] to examine three types of networks with di-
rected edges: (i) the core-periphery structure [11] with pa-
rameters [0.9 0.5; 0.5 0.3], which mimics the information
diffusion traces in real world networks, (ii) the Erdős-Rényi
random networks with parameters [0.5 0.5; 0.5 0.5], being
typical in physics and graph theory, and (iii) the hierarchy
networks with parameters [0.9 0.1; 0.1 0.9].

Topic Generation. Each node j is assigned a uniformly
distributed random variable θj ∈ (0, 1]K which is the pa-
rameter for a K-dimensional symmetric Dirichlet distribu-
tion Dir(θj). Then we can sample a K-dimensional topic
distribution mj from Dir(θj) for each node j. Since the

entries of θ is less than one, the generated memes are more
focused on a small subsets of topics.

Cascade Generation. For each pair of nodes j and i, the
edge j → i is randomly assigned a K-dimensional topic
preference vector αji where each component αlji ∈ [0, 1].
Given a network G, we generate a cascade from G by ran-
domly choosing a node j as the root of the cascade. The
root node j is then assigned to time stamp tj = 0. We sam-
ple a meme mtj

j from Dir(θj). Then, for each neighbor
node i pointed by j, its event time ti is sampled from the
formula (14). The child node iwill copy the received meme
m
tj
j and forward it to its own children. In general, node i

can add a small disturbance to the vector mtj
j to generate

a slightly different meme. However, for simplicity, in our
later experiments, we assume that node i directly copies
m
tj
j as its own meme. The diffusion process will continue

by further infecting the neighbors pointed by node i in a
breadth-first fashion until either the overall time exceed the
predefined observation time window T c, or there is no new
node being infected. If a node is infected more than once
by multiple parents, only the first infection time stamp and
the meme will be recorded.

Experimental Setting. For each type of synthetic net-
works, we randomly instantiate the network topologies and
all the required parameters ( αji for each edge and the set
of memes mtj

j ) for five times. The number of cascades
varies from 1000, 5000, 10000, 15000 to 20000. For each
experiment setting, the regularization parameter is chosen
based on two-fold cross validation, and the experimental
results are reported on a separate hold-out test set consist-
ing of the same number of cascades. For NETRATE and
MoNET, we fit them with a Rayleigh transmission model.

Evaluation Metrics. We have considered three different
metrics: (1) we first compare the F1 score for the network
recovery. F1 := 2·precision·recall

precision+recall , where precision is the
fraction of edges in the inferred network that also present
in the true network and recall is the fraction of edges in the
true network that also present in the inferred network; (2)
we compare the modes of the fitted Rayleigh distributions
given by TOPICCASCADE, NETRATE, and MoNET with
the true mode for each meme mj from j → i, and report
the Mean Absolute Error (MAE). (3) and finally, we report
the distance ‖α̂ji − αji‖2 between the estimated parame-
ters and the true ones as number of cascades varies.

F1 score for network recovery. From Figure 3, we can
see that in all cases, TOPICCASCADE performs consis-
tently and significantly better than NETRATE and MoNET.
Furthermore, its performance also steadily increases as
we increase the number of cascades, and finally TOPIC-
CASCADE almost recovers the entire network with around
10000 cascades. In contrast, the competitor method seldom
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Figure 3: F1 Scores for network recovery. Each network has 512 nodes and 1024 edges.
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Figure 4: Absolute mean errors between the estimated modes and the true modes.

fully recovers the entire network given the same number of
cascades, although it has less parameters to fit.

MAE for mode prediction. Figure 4 presents the MAE
between the estimated mode and the true mode. When
there are only 1000 cascades, NETRATE and MoNET can
perform better than TOPICCASCADE, since TOPICCAS-
CADE has more parameters to estimate. However, as
the number of cascades grows, the MAE for TOPICCAS-
CADE quickly decreases. In contrast, NETRATE and
MoNET keep a steady error regardless of the increased
number of cascades since it is not sensitive to topics of the
meme.

To further illustrate the extent to which the estimated mode
is close to the true value, we plot the relative error of the
estimated median mode with respect to the true value in
Figure 5. In all cases, the estimation given by TOPICCAS-
CADE goes to the true mode quickly as the number of cas-
cades increases, while NETRATE and MoNET keep an al-
most steady error rate.

Distance between the estimation and the true value.
Because in our simulations we have known in advance the
true topic preference parameter on each edge, we would
like to check how close the estimated α̂ji is close to the
true αji. In Figure 6, we plot the average distance between
α̂ji and αji. Again, it shows that α̂ji approaches to αji
quickly as the number of cascades increases.
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Figure 6: Average distance between the estimated parame-
ters and the true values.

6.2 Real World Dataset

Finally, we use the MemeTracker dataset [4] to evaluate our
model. In this dataset, the hyperlinks between articles and
posts can be used to represent the flow of information from
one site to another site. When a site publishes a new post,
it will put hyperlinks to related posts in some other sites
published earlier as its sources. Later as it also becomes
“older”, it will be cited by other newer posts as well. As a
consequence, all the time-stamped hyperlinks form a cas-
cade for particular piece of information (or event) flowing
among different sites. The networks formed by these hy-
perlinks are used to be the ground truth. In addition, each
post also has some texts to describe its content. There are
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Figure 5: Relative errors between the estimated median mode and the true median mode.

Table 1: Ten topics learnt from the posts.

Topic 0 : information social computer google
Topic 1 : people women life god
Topic 2 : time love people life
Topic 3 : market year money economy
Topic 4 : war georgia military country
Topic 5 : obama mccain president campaign
Topic 6 : energy oil gas plan
Topic 7 : people laws issues free
Topic 8 : loss men till las
Topic 9 : windows web technology games

totally 3771 posts with 85671 words. We have extracted a
network consisting of top 500 sites with about 1100 edges
and 2000 cascades. The maximum time is 614 hours. We
first fit an LDA [2] model to the corpus of posts and ex-
tract ten typical topics shown in Table 1 where each topic
includes the top four descriptive words.

Table 2: Estimations in the MemeTracker dataset with
Rayleigh transmission functions on the correctly predicted
edges.

Models train test
F1 MAE Median MAE Median

TOPICCASCADE 0.60 15.8 7.4 28.0 2.4
NETRATE 0.23 31.8 21.2 33.7 24.9
MoNET 0.14 32.3 20.8 35.2 25.8

Table 3: Estimations in the MemeTracker dataset with ex-
ponential transmission functions on the correctly predicted
edges.

Models train test
F1 MAE Median MAE Median

TOPICCASCADE 0.72 174 14.9 241 9.3
NETRATE 0.81 1307 532.8 538.5 27.1
MoNET 0.72 1317 527 585 27

For each pair of nodes i and j, given a post topic mj , we
use the modes of the fitted Rayleigh distributions as the es-
timated transmission time from j to i for the post mj . We

then report the MAE and the median error between the es-
timated time and the real time on the correctly estimated
edges in Table 2. We start to compare different models first
by using the whole dataset to train and report the different
metrics in the train column of Table 2. Then, we uniformly
select 10-percent of the edges as the test data and use the
other 90-percent data to train. The experiments have been
repeated for 10 times. We report the average value of all the
metrics in the test column of Table 2. Moreover, we also re-
peat all the above experiments by fitting a topic-modulated
exponential transmission function for each edge and use
the expectation as the estimated time on each correctly pre-
dicted edge in Table 3. In all cases, TOPICCASCADE have
lower MAE, Median error as well as a relatively better F1
score. For both NETRATE and MoNET, they are also fitted
by the exponential distribution to the MemeTracker dataset
in order to recover the network structure. Because the ex-
ponential model is relatively easier to fit than the Rayleigh
distribution, it gives a better F1 score. However, when we
use the expectation of the exponential to predict the time,
Table 3 shows that it has large MAE and Median error in
terms of predicting the actual time of the events.

7 CONCLUSIONS

We have developed a topic-sensitive diffusion model, re-
ferred to as TOPICCASCADE to model the variable diffu-
sion rates of memes with different topics. In contrast to the
previous state-of-the-art methods, such as NETRATE and
MoNET, our model adapts to the topics of each meme to
capture their differential diffusion patterns. We designed
an efficient algorithm to find a sparse solution using a
proximal gradient based block coordinate descent method
with group-lasso type of regularization. Experimental re-
sults on both synthetic and real data show that TOPICCAS-
CADE have better performance in terms of both the network
structure recovery and predicting the transmission time.
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