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Abstract

By making personalized suggestions, a recommender system is playing a crucial
role in improving the engagement of users in modern web-services. However,
most recommendation algorithms do not explicitly take into account the tempo-
ral behavior and the recurrent activities of users. Two central but less explored
questions are how to recommend the most desirable item at the right moment, and
how to predict the next returning time of a user to a service. To address these
questions, we propose a novel framework which connects self-exciting point pro-
cesses and low-rank models to capture the recurrent temporal patterns in a large
collection of user-item consumption pairs. We show that the parameters of the
model can be estimated via a convex optimization, and furthermore, we develop
an efficient algorithm that maintains O(1/ε) convergence rate, scales up to prob-
lems with millions of user-item pairs and thousands of millions of temporal events.
Compared to other state-of-the-arts in both synthetic and real datasets, our model
achieves superb predictive performance in the two time-sensitive recommendation
questions. Finally, we point out that our formulation can incorporate other extra
context information of users, such as profile, textual and spatial features.

1 Introduction
Delivering personalized user experiences is believed to play a crucial role in the long-term engage-
ment of users to modern web-services [26]. For example, making recommendations on proper items
at the right moment can make personal assistant services on mainstream mobile platforms more com-
petitive and usable, since people tend to have different activities depending on the temporal/spatial
contexts such as morning vs. evening, weekdays vs. weekend (see for example Figure 1(a)). Unfor-
tunately, most existing recommendation techniques are mainly optimized at predicting users’ one-
time preference (often denoted by integer ratings) on items, while users’ continuously time-varying
preferences remain largely under explored.

Besides, traditional user feedback signals (e.g. user-item ratings, click-through-rates, etc.) have been
increasingly argued to be ineffective to represent real engagement of users due to the sparseness and
nosiness of the data [26]. The temporal patterns at which users return to the services (items) thus be-
comes a more relevant metric to evaluate their satisfactions [12]. Furthermore, successful predictions
of the returning time not only allows a service to keep track of the evolving user preferences, but also
helps a service provider to improve their marketing strategies. For most web companies, if we can
predict when users will come back next, we could make ads bidding more economic, allowing mar-
keters to bid on time slots. After all, marketers need not blindly bid all time slots indiscriminately.
In the context of modern electronic health record data, patients may have several diseases that have
complicated dependencies on each other shown at the bottom of Figure 1(a). The occurrence of one
disease could trigger the progression of another. Predicting the returning time on certain disease
can effectively help doctors to take proactive steps to reduce the potential risks. However, since
most models in literature are particularly optimized for predicting ratings [16, 23, 15, 3, 25, 13, 21],
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Figure 1: Time-sensitive recommendation. (a) in the top figure, one wants to predict the most
desirable activity at a given time t for a user; in the bottom figure, one wants to predict the returning
time to a particular disease of a patient. (b) The sequence of events induced from each user-item
pair (u, i) is modeled as a temporal point process along time.

exploring the recurrent temporal dynamics of users’ returning behaviors over time becomes more
imperative and meaningful than ever before.

Although the aforementioned applications come from different domains, we seek to capture them
in a unified framework by addressing the following two related questions: (1) how to recommend
the most relevant item at the right moment, and (2) how to accurately predict the next returning-
time of users to existing services. More specifically, we propose a novel convex formulation of
the problems by establishing an under explored connection between self-exciting point processes
and low-rank models. We also develop a new optimization algorithm to solve the low rank point
process estimation problem efficiently. Our algorithm blends proximal gradient and conditional
gradient methods, and achieves the optimal O(1/t) convergence rate. As further demonstrated by
our numerical experiments, the algorithm scales up to millions of user-item pairs and thousands of
millions of temporal events, and achieves superb predictive performance on the two time-sensitive
problems on both synthetic and real datasets. Furthermore, our model can be readily generalized to
incorporate other contextual information by making the intensity function explicitly depend on the
additional spatial, textual, categorical, and user profile information.

Related Work. The very recent work of Kapoor et al. [12, 11] is most related to our approach. They
attempt to predict the returning time for music streaming service based on survival analysis [1] and
hidden semi-markov model. Although these methods explicitly consider the temporal dynamics of
user-item pairs, a major limitation is that the models cannot generalize to recommend any new item
in future time, which is a crucial difference compared to our approach. Moreover, survival analysis
is often suitable for modeling a single terminal event [1], such as infection and death, by assuming
that the inter-event time to be independent. However, in many cases this assumption might not hold.

2 Background on Temporal Point Processes

This section introduces necessary concepts from the theory of temporal point processes [4, 5, 6].
A temporal point process is a random process of which the realization is a sequence of events {ti}
with ti ∈ R+ and i ∈ Z+ abstracted as points on the time line. Let the history T be the list of event
time {t1, t2, . . . , tn} up to but not including the current time t. An important way to characterize
temporal point processes is via the conditional intensity function, which is the stochastic model
for the next event time given all previous events. Within a small window [t, t + dt), λ(t)dt =
P {event in [t, t+ dt)|T } is the probability for the occurrence of a new event given the history T .

The functional form of the intensity λ(t) is designed to capture the phenomena of interests [1]. For
instance, a homogeneous Poisson process has a constant intensity over time, i.e., λ(t) = λ0 >
0, which is independent of the history T . The inter-event gap thus conforms to the exponential
distribution with the mean being 1/λ0. Alternatively, for an inhomogeneous Poisson process, its
intensity function is also assumed to be independent of the history T but can be a simple function
of time, i.e., λ(t) = g(t) > 0. Given a sequence of events T = {t1, . . . , tn}, for any t > tn,
we characterize the conditional probability that no event happens during [tn, t) and the conditional
density f(t|T ) that an event occurs at time t as S(t|T ) = exp

(
−
∫ t
tn
λ(τ) dτ

)
and f(t|T ) =
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λ(t)S(t|T ) [1]. Then given a sequence of events T = {t1, . . . , tn}, we express its likelihood by

`({t1, . . . , tn}) =
∏

ti∈T
λ(ti) · exp

(
−
∫ T

0

λ(τ) dτ

)
. (1)

3 Low Rank Hawkes Processes
In this section, we present our model in terms of low-rank self-exciting Hawkes processes, discuss its
possible extensions and provide solutions to our proposed time-sensitive recommendation problems.

3.1 Modeling Recurrent User Activities with Hawkes Processes
Figure 1(b) highlights the basic setting of our model. For each observed user-item pair (u, i), we
model the occurrences of user u’s past consumption events on item i as a self-exciting Hawkes
process [10] with the intensity:

λ(t) = γ0 + α
∑

ti∈T
γ(t, ti), (2)

where γ(t, ti) > 0 is the triggering kernel capturing temporal dependencies, α > 0 scales the
magnitude of the influence of each past event, γ0 > 0 is a baseline intensity, and the summation of
the kernel terms is history dependent and thus a stochastic process by itself.

We have a twofold rationale behind this modeling choice. First, the baseline intensity γ0 captures
users’ inherent and long-term preferences to items, regardless of the history. Second, the triggering
kernel γ(t, ti) quantifies how the influence from each past event evolves over time, which makes
the intensity function depend on the history T . Thus, a Hawkes process is essentially a conditional
Poisson process [14] in the sense that conditioned on the history T , the Hawkes process is a Poisson
process formed by the superposition of a background homogeneous Poisson process with the inten-
sity γ0 and a set of inhomogeneous Poisson processes with the intensity γ(t, ti). However, because
the events in the past can affect the occurrence of the events in future, the Hawkes process in general
is more expressive than a Poisson process, which makes it particularly useful for modeling repeated
activities by keeping a balance between the long and the short term aspects of users’ preferences.

3.2 Transferring Knowledge with Low Rank Models
So far, we have shown modeling a sequence of events from a single user-item pair. Since we cannot
observe the events from all user-item pairs, the next step is to transfer the learned knowledge to
unobserved pairs. Given m users and n items, we represent the intensity function between user u
and item i as λu,i(t) = λu,i0 + αu,i

∑
tu,i
j ∈T u,i γ(t, tu,ij ), where λu,i0 and αu,i are the (u, i)-th entry

of the m-by-n non-negative base intensity matrix Λ0 and the self-exciting matrixA, respectively.

However, the two matrices of coefficients Λ0 and A contain too many parameters. Since it is often
believed that users’ behaviors and items’ attributes can be categorized into a limited number of
prototypical types, we assume that Λ0 and A have low-rank structures. That is, the nuclear norms
of these parameter matrices are small ‖Λ0‖∗ 6 λ′, ‖A‖∗ 6 β′. Some researchers also explicitly
assume that the two matrices factorize into products of low rank factors. Here we assume the above
nuclear norm constraints in order to obtain convex parameter estimation procedures later.

3.3 Triggering Kernel Parametrization and Extensions
Because it is only required that the triggering kernel should be nonnegative and bounded, feature
ψu,i in 3 often has analytic forms when γ(t, tu,ij ) belongs to many flexible parametric families,
such as the Weibull and Log-logistic distributions [1]. For the simplest case, γ(t, tu,ij ) takes the
exponential form γ(t, tu,ij ) = exp(−(t− tu,ij )/σ). Alternatively, we can make the intensity function
λu,i(t) depend on other additional context information associated with each event. For instance, we
can make the base intensity Λ0 depend on user-profiles and item-contents [9, 7]. We might also
extend Λ0 and A into tensors to incorporate the location information. Furthermore, we can even
learn the triggering kernel directly using nonparametric methods [8, 30]. Without loss of generality,
we stick with the exponential form in later sections.

3.4 Time-Sensitive Recommendation
Once we have learned Λ0 andA, we are ready to solve our proposed problems as follows :
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(a) Item recommendation. At any given time t, for each user-item pair (u, i), because the intensity
function λu,i(t) indicates the tendency that user u will consume item i at time t, for each user u,
we recommend the proper items by the following procedures :

1. Calculate λu,i(t) for each item i.
2. Sort the items by the descending order of λu,i(t).
3. Return the top-k items.

(b) Returning-time prediction: for each user-item pair (u, i), the intensity function λu,i(t) domi-
nates the point patterns along time. Given the history T u,i = {t1, t2, . . . , tn}, we calculate the
density of the next event time by f(t|T u,i) = λu,i(t) exp

(
−
∫ t
tn
λu,i(t)dt

)
, so we can use the

expectation to predict the next event. Unfortunately, this expectation often does not have analytic
forms due to the complexity of λu,i(t) for Hawkes process, so we approximate the returning-time
as following :

1. Draw samples
{
t1n+1, . . . , t

m
n+1

}
∼ f(t|T u,i) by Ogata’s thinning algorithm [19].

2. Estimate the returning-time by the sample average 1
m

∑m
i=1 t

i
n+1

4 Parameter Estimation
Having presented our model, in this section, we develop a new algorithm which blends proximal
gradient and conditional gradient methods to learn the model efficiently.

4.1 Convex Formulation

Let T u,i be the set of events induced between u and i. We express the log-likelihood of observing
each sequence T u,i based on Equation 1 as :

`
(
T u,i|Λ0,A

)
=
∑

tu,i
j ∈T u,i

log(w>u,iφ
u,i
j )−w>u,iψu,i, (3)

where wu,i = (Λ0(u, i),A(u, i))
>, φu,ij = (1,

∑
tu,i
k <tu,i

j
γ(tu,ij , tu,ik ))> and ψu,i =

(T,
∑
tu,i
j ∈T u,i

∫ T
tu,i
j
γ(t, tu,ij )dt)>. When γ(t, tu,ij ) is the exponential kernel, ψu,i can be ex-

pressed as ψu,i = (T,
∑
tu,i
j ∈T u,i σ(1 − exp(−(T − tu,ij )/σ)))>. Then, the log-likelihood of

observing all event sequences O =
{
T u,i

}
u,i

is simply a summation of each individual term by
` (O) =

∑
T u,i∈O `

(
T u,i

)
. Finally, we can have the following convex formulation :

OPT = min
Λ0,A

− 1

|O|
∑
T u,i∈O

`
(
T u,i|Λ0,A

)
+ λ‖Λ0‖∗ + β‖A‖∗ subject to Λ0,A > 0, (4)

where the matrix nuclear norm ‖ ·‖∗, which is a summation of all singular values, is commonly used
as a convex surrogate for the matrix rank function [24]. One off-the-shelf solution to 4 is proposed
in [29] based on ADMM. However, the algorithm in [29] requires, at each iteration, a full SVD for
computing the proximal operator, which is often prohibitive with large matrices. Alternatively, we
might turn to more efficient conditional gradient algorithms [28], which require instead, the much
cheaper linear minimization oracles. However, the non-negativity constraints in our problem prevent
the linear minimization from having a simple analytical solution.

4.2 Alternative Formulation

The difficulty of directly solving the original formulation 4 is caused by the fact that the nonnegative
constraints are entangled with the non-smooth nuclear norm penalty. To address this challenge, we
approximate 4 using a simple penalty method. Specifically, given ρ > 0, we arrive at the next
formulation 5 by introducing two auxiliary variables Z1 and Z2 with some penalty function, such
as the squared Frobenius norm.

ÔPT = min
Λ0,A,Z1,Z2

− 1

|O|
∑
T u,i∈O

`
(
T u,i|Λ0,A

)
+ λ‖Z1‖∗ + β‖Z2‖∗ + ρ‖Λ0 −Z1‖2F

+ ρ‖A−Z2‖2F subject to Λ0,A > 0. (5)
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Algorithm 1: Learning Hawkes-Recommender
Input: O =

{
T u,i

}
, ρ > 0

Output: Y1 = [Λ0;A]
Choose to initialize X0

1 and X0
2 = X0

1 ;
Set Y 0 = X0;
for k = 1, 2, . . . do

δk = 2
k+1

;
Uk−1 = (1− δk)Y k−1 + δkXk−1 ;
Xk

1 = ProxUk−1

(
ηk∇1(f(U

k−1))
)
;

Xk
2 = LMOψ

(
∇2(f(U

k−1))
)
;

Y k = (1− δk)Y k−1 + δkXk;
end

Algorithm 2: ProxUk−1

(
ηk∇1(f(Uk−1))

)
Xk

1 =
(
Uk−1 − ηk∇1(f(U

k−1))
)
+

;

Algorithm 3: LMOψ

(
∇2(f(Uk−1))

)
(u1, v1), (u2, v2) top singular vector pairs of
−∇2(f(U

k−1))[Z1] and −∇2(f(U
k−1))[Z2];

Xk
2 [Z1] = u1v

>
1 , Xk

2 [Z2] = u2v
>
2 ;

Find αk1 and αk2 by solving (6);
Xk

2 [Z1] = αk1X
k
2 [Z1];

Xk
2 [Z2] = αk2X

k
2 [Z2];

We show in Theorem 1 that when ρ is properly chosen, these two formulations lead to the same
optimum. See appendix for the complete proof. More importantly, the new formulation 5 allows us
to handle the nonegativity constraints and nuclear norm regularization terms separately.

Theorem 1. With the condition ρ > ρ∗, the optimal value ÔPT of the problem 5 coincides with the
optimal value OPT in the problem 4 of interest, where ρ∗ is a problem dependent threshold,

ρ∗ = max

{
λ (‖Λ∗0‖∗ − ‖Z∗1‖∗) + β (‖A∗‖∗ − ‖Z∗2‖∗)

‖Λ∗0 −Z∗1‖2F + ‖A∗ −Z∗2‖2F

}
.

4.3 Efficient Optimization: Proximal Method Meets Conditional Gradient

Now, we are ready to present Algorithm 1 for solving 5 efficiently. Denote X1 = [Λ0;A], X2 =
[Z1;Z2] and X = [X1;X2]. We use the bracket [·] notation X1[Λ0],X1[A],X2[Z1],X2[Z2]
to represent the respective part for simplicity. Let f(X) := f(Λ0,A,Z1,Z2) =
− 1
|O|
∑
T u,i∈O `

(
T u,i|Λ0,A

)
+ ρ‖Λ0 −Z1‖2F + ρ‖A−Z2‖2F .

The course of our action is straightforward: at each iteration, we apply cheap projection gradient for
blockX1 and cheap linear minimization for blockX2 and maintain three interdependent sequences{
Uk
}
k>1

,
{
Y k
}
k>1

and
{
Xk
}
k>1

based on the accelerated scheme in [17, 18]. To be more
specific, the algorithm is consisted of two main subroutines:

Proximal Gradient. When updating X1, we compute directly the associated proximal operator,
which in our case, reduces to the simple projection Xk

1 =
(
Uk−1 − ηk∇1f(Uk−1)

)
+

, where (·)+

simply sets the negative coordinates to zero.

Conditional Gradient. When updating X2, instead of computing the proximal operator, we call
the linear minimization oracle (LMOψ): Xk

2 [Z1] = argmin {〈pk[Z1],Z1〉+ ψ(Z1)} where pk =
∇2(f(Uk−1)) is the partial derivative with respect to X2 and ψ(Z1) = λ‖Z1‖∗. We do similar
updates forXk

2 [Z2]. The overall performance clearly depends on the efficiency of this LMO, which
can be solved efficiently in our case as illustrated in Algorithm 3. Following [27], the linear min-
imization for our situation requires only : (i) computing Xk

2 [Z1] = argmin‖Z1‖∗61 〈pk[Z1],Z1〉,
where the minimizer is readily given byXk

2 [Z1] = u1v
>
1 , and u1, v1 are the top singular vectors of

−pk[Z1]; and (ii) conducting a line-search that produces a scaling factor αk1 = argminα1>0 h(α1)

h(α1) := ρ‖Y k−1
1 [Λ0]− (1− δk)Y k−1

2 [Z1]− δk(α1X
k
2 [Z1])‖2F + λδkα1 + C, (6)

where C = λ(1− δk)‖Y k−1
2 [Z1]‖∗. The quadratic problem (6) admits a closed-form solution and

thus can be computed efficiently. We repeat the same process for updating αk2 accordingly.

4.4 Convergence Analysis

Denote F (X) = f(X)+ψ(X2) as the objective in formulation 5, whereX = [X1;X2]. We estab-
lish the following convergence results for Algorithm 1 described above when solving formulation 5.
Please refer to Appendix for complete proof.
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Theorem 2. Let
{
Y k
}

be the sequence generated by Algorithm 1 by setting δk = 2/(k + 1), and
ηk = (δk)−1/L. Then for k > 1, we have

F (Y k)− ÔPT 6
4LD1

k(k + 1)
+

2LD2

k + 1
. (7)

where L corresponds to the Lipschitz constant of∇f(X) and D1 and D2 are some problem depen-
dent constants.

Remark. Let g(Λ0, A) denote the objective in formulation 4, which is the original problem of our
interest. By invoking Theorem 1, we further have, g(Y k[Λ0],Y k[A]) − OPT 6 4LD1

k(k+1) + 2LD2

k+1 .

The analysis build upon the recursions from proximal gradient and conditional gradient methods.
As a result, the overall convergence rate comes from two parts, as reflected in (7). Interestingly, one
can easily see that for both the proximal and the conditional gradient parts, we achieve the respective
optimal convergence rates. When there is no nuclear norm regularization term, the results recover
the well-known optimal O(1/t2) rate achieved by proximal gradient method for smooth convex
optimization. When there is no nonnegative constraints, the results recover the well-known O(1/t)
rate attained by conditional gradient method for smooth convex minimization. When both nuclear
norm and nonnegativity are in present, the proposed algorithm, up to our knowledge, is first of its
kind, that achieves best of both worlds, which could be of independent interest.

5 Experiments
We evaluate our algorithm by comparing with state-of-the-art competitors on both synthetic and real
datasets. For each user, we randomly pick 20-percent of all the items she has consumed and hold out
the entire sequence of events. Besides, for each sequence of the other 80-percent items, we further
split it into a pair of training/testing subsequences. For each testing event, we evaluate the predictive
accuracy on two tasks :

(a) Item Recommendation: suppose the testing event belongs to the user-item pair (u, i). Ideally
item i should rank top at the testing moment. We record its predicted rank among all items.
Smaller value indicates better performance.

(b) Returning-Time Prediction: we predict the returning-time from the learned intensity function
and compute the absolute error with respect to the true time.

We repeat these two evaluations on all testing events. Because the predictive tasks on those entirely
held-out sequences are much more challenging, we report the total mean absolute error (MAE) and
that specific to the set of entirely heldout sequences, seperately.

5.1 Competitors
Poisson process is a relaxation of our model by assuming each user-item pair (u, i) has only a
constant base intensity Λ0(u, i), regardless of the history. For task (a), it gives static ranks regardless
of the time. For task (b), it produces an estimate of the average inter-event gaps. In many cases, the
Poisson process is a hard baseline in that the most popular items often have large base intensity, and
recommending popular items is often a strong heuristic.

STiC [11] fits a semi-hidden markov model to each observed user-item pair. Since it can only make
recommendations specific to the few observed items visited before, instead of the large number of
new items, we only evaluate its performance on the returning time prediction task. For the set of
entirely held-out sequences, we use the average predicted inter-event time from each observed item
as the final prediction.

SVD is the classic matrix factorization model. The implicit user feedback is converted into an
explicit rating using the frequency of a users item consumptions [2]. Since it is not designed for
predicting the returning time, we report its performance on the time-sensitive recommendation task
as a reference.

Tensor factorization generalizes matrix factorization to include time. We compare with the state-
of-art method [3] which considers poisson regression as the loss function to fit the number of events
in each discretized time slot and shows better performance compared to other alternatives with the
squared loss [25, 13, 22, 21]. We report the performance by (1) using the parameters fitted only in
the last interval, and (2) using the average parameters over all time intervals. We denote these two
variants with varying number of intervals as Tensor-#-Last and Tensor-#-Avg.
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Figure 2: Estimation error (a) by #iterations, (b) by #entries (1,000 events per entry), and (c) by
#events per entry (10,000 entries); (d) scalability by #entries (1,000 events per entry, 500 iterations);
(e) MAE of the predicted ranking; and (f) MAE of the predicted returning time.

5.2 Results
Synthetic data. We generate two 1,024-by-1,204 user-item matrices Λ0 andAwith rank five as the
ground-truth. For each user-item pair, we simulate 1,000 events by Ogata’s thinning algorithm [19]
with an exponential triggering kernel and get 109 events in total. The bandwidth for the triggering
kernel is fixed to one. By theorem 1, it is inefficient to directly estimate the exact value of the
threshold value for ρ. Instead, we tune ρ, λ and β to give the best performance.

How does our algorithm converge ? Figure 2(a) shows that it only requires a few hundred iterations
to descend to a decent error for both Λ0 and A, indicating algorithm 1 converges very fast. Since
the true parameters are low-rank, Figure 2(b-c) verify that it only requires a modest number of ob-
served entries, each of which induces a small number of events (1,000) to achieve a good estimation
performance. Figure 2(d) further illustrates that algorithm 1 scales linearly as the training set grows.

What is the predictive performance ? Figure 2(e-f) confirm that algorithm 1 achieves the best pre-
dictive performance compared to other baselines. In Figure 2(e), all temporal methods outperform
the static SVD since this classic baseline does not consider the underlying temporal dynamics of the
observed sequences. In contrast, although the Poisson regression also produces static rankings of
the items, it is equivalent to recommending the most popular items over time. This simple heuristic
can still give competitive performance. In Figure 2(f), since the occurrence of a new event depends
on the whole past history instead of the last one, the performance of STiC deteriorates vastly. The
other tensor methods predict the returning time with the information from different time intervals.
However, because our method automatically adapts different contributions of each past event to the
prediction of the next event, it can achieve the best prediction performance overall.

Real data. We also evaluate the proposed method on real datasets. last.fm consists of the music
streaming logs between 1,000 users and 3,000 albums. There are around 20,000 observed user-
album pairs with more than one million events in total. tmall.com contains around 100K shopping
events between 26,376 users and 2,563 stores. The unit time for both dataset is hour. MIMIC II
medical dataset is a collection of de-identified clinical visit records of Intensive Care Unit patients
for seven years. We filtered out 650 patients and 204 diseases. Each event records the time when a
patient was diagnosed with a specific disease. The time unit is week. All model parameters ρ, λ, β,
the kernel bandwidth and the latent rank of other baselines are tuned to give the best performance.

Does the history help ? Because the true temporal dynamics governing the event patterns are unob-
served, we first investigate whether our model assumption is reasonable. Our Hawkes model con-
siders the self-exciting effects from past user activities, while the survival analysis applied in [11]
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Figure 3: The quantile plots of different fitted processes, the MAE of predicted rankings and
returning-time on the last.fm (top), tmall.com (middle) and the MIMIC II (bottom), respectively.

assumes i.i.d. inter-event gaps which might conform to an exponential (Poisson process) or Rayleigh
distribution. According to the time-change theorem [6], given a sequence T = {t1, . . . , tn} and a

particular point process with intensity λ(t), the set of samples
{∫ ti

ti−1
λ(t)dt

}n
i=1

should conform
to a unit-rate exponential distribution if T is truly sampled from the process. Therefore, we compare
the theoretical quantiles from the exponential distribution with the fittings of different models to a
real sequence of (listening/shopping/visiting) events. The closer the slope goes to one, the better a
model matches the event patterns. Figure 3 clearly shows that our Hawkes model can better explain
the observed data compared to the other survival analysis models.

What is the predictive performance ? Finally, we evaluate the prediction accuracy in the 2nd and
3rd column of Figure 3. Since holding-out an entire testing sequence is more challenging, the
performance on the Heldout group is a little lower than that on the average Total group. However,
across all cases, since the proposed model is able to better capture the temporal dynamics of the
observed sequences of events, it can achieve a better performance on both tasks in the end.

6 Conclusions
We propose a novel convex formulation and an efficient learning algorithm to recommend relevant
services at any given moment, and to predict the next returning-time of users to existing services.
Empirical evaluations on large synthetic and real data demonstrate its superior scalability and predic-
tive performance. Moreover, our optimization algorithm can be used for solving general nonnegative
matrix rank minimization problem with other convex losses under mild assumptions, which may be
of independent interest.
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7 Appendix

Theorem 1. With the condition ρ > ρ∗, the optimal value ÔPT of the problem 5 coincides with the
optimal value OPT in the problem 8 of interest, where ρ∗ is a problem dependent threshold.

Proof. We start by rewriting formulation 4 to the equivalent form:

min− 1

|O|
∑
T u,i∈O

`
(
T u,i|Λ0,A

)
+ λ‖Z1‖∗ + β‖Z2‖∗, Λ0,A > 0,Λ0 = Z1,A = Z2. (8)

We can observe that the optimal solution of 8 is a feasible solution of 5 with the same objective
function value, so it is evident that ÔPT 6 OPT. On the other hand, suppose (Λ∗0,A

∗,Z∗1 ,Z
∗
2 )

is an optimal solution of 5 with Λ∗0 6= Z∗1 ,A
∗ 6= Z∗2 in general. Since Λ∗0,A

∗ > 0, they are also
feasible for 8, so we can find a ρ′ such that λ‖Z∗1‖∗+β‖Z∗2‖∗+ρ′‖Λ∗0−Z∗1‖2F +ρ′‖A∗−Z∗2‖2F >
λ‖Λ∗0‖∗ + β‖A∗‖∗. Therefore, under the condition that

ρ > ρ∗ = max

{
λ (‖Λ∗0‖∗ − ‖Z∗1‖∗) + β (‖A∗‖∗ − ‖Z∗2‖∗)

‖Λ∗0 −Z∗1‖2F + ‖A∗ −Z∗2‖2F

}
, (9)

we have ÔPT > − 1
|O|
∑
T u,i∈O `

(
T u,i|Λ∗0,A∗

)
+ λ‖Λ∗0‖∗ + β‖A∗‖∗ > OPT and readily arrive

at the theorem.

Theorem 2. Let
{
Y k
}

be the sequence generated by Algorithm 1, δk = 2/(k + 1), and ηk =

(δk)−1/L, D1 and D2 some problem dependent constants. Then for k > 1, we have

F (Y k)− F (X∗) 6
4LD1

k(k + 1)
+

2LD2

k + 1
. (10)

Proof. Consider the following general optimization problem
min
X∈Ω

F (X) := f(X1;X2) + Ψ(X2), (11)

whereX = [X1;X2], Ω = Ω1×Ω2, f is L-smooth and convex, and Ψ(·) is convex. Let δk = 1
k+2

and ηk = (δk)−1/L. First Note that Y k − Uk−1 = δk(Xk −Xk−1). By the smoothness of f
where f(y) 6 f(x) + 〈f ′(x), y − x〉+ L

2 ‖y − x‖
2, we have

f(Y k) 6 f(Uk−1) +∇f(Uk−1)>
(
Y k −Uk−1

)
+ L

2 δ
2
k‖Xk −Xk−1‖2(

by the definition of Y k
)

= (1− δk)
(
f(Uk−1) +∇f(Uk−1)>

(
Y k−1 −Uk−1

))
+δk

(
f(Uk−1) +∇f(Uk−1)>

(
Xk −Uk−1

))
+ L

2 δ
2
k‖Xk −Xk−1‖2

(by the convexity of f)

6 (1− δk)f(Y k−1) + δk
(
f(Uk−1) +∇f(Uk−1)>

(
Xk −Uk−1

))
+L

2 δ
2
k‖Xk −Xk−1‖2.

(12)

Note the proximal mapping Proxx0
(ξ) := argminx∈X{V (x, x0) + 〈ξ, x〉}, where V (x, x′) =

ω(x) − ω(x′) − 〈∇ω(x′), x − x′〉 is the Bregman distance, and ω(x) is 1-strongly convex. For
anyX1 ∈ Ω1, we have the following well-known inequality [20] :

∇1f(Uk−1)T (Xk
1 −X1) 6 (ηk)−1[V (X1,X

k−1
1 )− V (X1,X

k
1 )− V (Xk

1 ,X
k−1
1 )]. (13)

Besides, by our linear minimization oracle

LMOΨ(∇2f(Uk−1)) = argmin
{〈
∇2f(Uk−1),X2

〉
+ Ψ(X2)

}
, (14)

we have
∇2f(Uk−1)>Xk

2 + Ψ(Xk
2 ) 6 ∇2f(Uk−1)>X2 + Ψ(X2). (15)
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As a consequence,

δk
(
f(Uk−1) +∇f(Uk−1)>

(
Xk −Uk−1

))
= δk

(
f(Uk−1) +∇1f(Uk−1)>

(
Xk

1 −Uk−1
1

)
+∇2f(Uk−1)>

(
Xk

2 −Uk−1
2

))
(by equation 15)

6 δk(f(Uk−1) +∇1f(Uk−1)>
(
Xk

1 −Uk−1
1 +X∗1 −X∗1

)
+∇2f(Uk−1)>X∗2 + Ψ(X∗2 )−Ψ(Xk

2 )−∇2f(Uk−1)>Uk−1
2 ))

6 δk(f(Uk−1) +∇1f(Uk−1)>
(
X∗1 −Uk−1

1

)
+∇2f(Uk−1)>(X∗2 −Uk−1

2 ) + Ψ(X∗2 )
+∇1f(Uk−1)>

(
Xk

1 −X∗1
)
−Ψ(Xk

2 ))

(by the convexity of f)

6 δkF (X∗) + δk∇1f(Uk−1)>
(
Xk

1 −X∗1
)
− δkΨ(Xk

2 )

(by equation 13)

6 δkF (X∗) + δk(ηk)−1(V (X∗1 ,X
k−1
1 )− V (X∗1 ,X

k
1 )− V (Xk

1 ,X
k−1
1 ))− δkΨ(Xk

2 )

(by the definition of Bregman distance)

6 δkF (X∗) + L(δk)2(V (X∗1 ,X
k−1
1 )− V (X∗1 ,X

k
1 ))− L(δk)2

2 ‖Xk
1 −Xk−1

1 ‖2 − δkΨ(Xk
2 )

Plugging into the previous inequality 12, we end up with

f(Y k) 6(1− δk)f(Y k−1) + δkF (X∗) + L(δk)2(V (X∗1 ,X
k−1
1 )− V (X∗1 ,X

k
1 ))

+
L(δk)2

2
‖Xk

2 −Xk−1
2 ‖2 − δkΨ(Xk

2 ), (16)

where we have used the fact ‖X = (X1;X2)‖2 = ‖X1‖2 + ‖X2‖2. Adding Ψ(Y k
2 ) to the both

sides, we have

F (Y k) 6 (1− δk)F (Y k−1) + δkF (X∗) + L(δk)2(V (X∗1 ,X
k−1
1 )− V (X∗1 ,X

k
1 ))

+L(δk)2

2 ‖Xk
2 −Xk−1

2 ‖2 + Ψ(Y k
2 )− δkΨ(Xk

2 )− (1− δk)Ψ(Y k−1
2 )(

by the convexity of Ψ and the definition of Y k
)

6 (1− δk)F (Y k−1) + δkF (X∗) + L(δk)2(V (X∗1 ,X
k−1
1 )− V (X∗1 ,X

k
1 ))

+L(δk)2

2 ‖Xk
2 −Xk−1

2 ‖2.

(17)

Subtracting F (X∗) from both sides of the above inequality, we have

F (Y k)− F (X∗) 6(1− δk)(F (Y k−1)− F (X∗)) + L(δk)2(V (X∗1 ,X
k−1
1 )− V (X∗1 ,X

k
1 ))

+
L(δk)2

2
‖Xk

2 −Xk−1
2 ‖2. (18)

By the fact δ1 = 1 and invoking the Lemma 1 of [18], the above inequality implies that

F (Y k)− F (X∗) 6
4L

k(k + 1)

(
V (X∗1 ,X

0
1 ) +

1

2

k∑
i=1

‖Xk
2 −Xk−1

2 ‖2
)
. (19)

Let D1 = V (X∗1 ,X
0
1 ) > 0 and D2 = maxx,y∈Ω2

‖x− y‖2, we have

F (Y k)− F (X∗) 6
4LD1

k(k + 1)
+

2LD2

k + 1
. (20)
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