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ABSTRACT
Recent years have seen that WWW is becoming a flourish-
ing social media which enables individuals to easily share
opinions, experiences and expertise at the push of a sin-
gle button. With the pervasive usage of instant messaging
systems and the fundamental shift in the ease of publish-
ing content, social network researchers and graph theory re-
searchers are now concerned with inferring community struc-
tures by analyzing the linkage patterns among individuals
and web pages. Although the investigation of community
structures has motivated many diverse algorithms, most of
them are unsuitable for large-scale social networks because
of the computational cost. Moreover, in addition to identify
the possible community structures, how to define and ex-
plain the discovered communities is also significant in many
practical scenarios.

In this paper, we present the algorithm ComTector(Com-
munity DeTector) which is more efficient for the commu-
nity detection in large-scale social networks based on the
nature of overlapping communities in the real world. This
algorithm does not require any priori knowledge about the
number or the original division of the communities. Because
real networks are often large sparse graphs, its running time
is thus O(C × Tri2), where C is the number of the detected
communities and Tri is the number of the triangles in the
given network for the worst case. Then we propose a general
naming method by combining the topological information
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with the entity attributes to define the discovered commu-
nities. With respected to practical applications, ComTec-
tor is challenged with several real life networks including
the Zachary Karate Club, American College Football, Scien-
tific Collaboration, and Telecommunications Call networks.
Experimental results show that this algorithm can extract
meaningful communities that are agreed with both of the
objective facts and our intuitions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms Theory Performance

Keywords
Social Network Analysis, Community Detection, Graph-based
Data Mining

1. INTRODUCTION
In recent years, easy connections brought about by cheap

devices, modular content, and shared computing resources
are having a profound impact on our social structures. Peo-
ple now increasingly take their required information from
one another rather than from institutional sources like cor-
porations, media outlets, religions, and political bodies[3].
Perhaps the most outstanding success of such kind of com-
munication is the World Wide Web(WWW). Powered by
Web 2.0 applications, WWW becomes the most popular so-
cial media which covers all forms of sharing: from experi-
ences, to photos, to recommendations. As a result, peo-
ple are implicitly involved in many social networks which
are formed by our friend lists in the instant messaging soft-
wares, by the bloggers who comment on a certain topic in
your blogspace, or by the users who write collaboratively in
a wiki site.

Most of these networks are generally sparse in global yet
dense in local. They have vertices in a group structure



that the vertices within the groups have higher density of
edges while vertices between groups have lower density of
edges[21][24]. This kind of structure is called the commu-
nity which is an important network property and can reveal
many hidden features of the given network. Individuals be-
longing to the same community are probable to have prop-
erties in common. The communities in the blogspace often
correspond to topics of interests. Monitoring the aggregate
trends and opinions revealed by these communities provides
valuable insight to a number of business applications, such as
marketing intelligence and competitive intelligence. Hence,
identifying the communities is a fundamental step not only
for discovering what makes entities come together, but also
for understanding the overall structural and functional prop-
erties of a large network[13][23].

A popular quantitative definition called Network Modular-
ity, proposed by Girvan and Newman[9][15], is widely used
as a quality metric for assessing the partitioning of a given
network into communities. The search for the largest mod-
ularity value is a NP-hard problem due to the fact that the
space of possible partitions grows faster than any power of
the system size[8]. For this reason, many recent algorithms
adopt various heuristic strategies to achieve the optimization
of this metric. However, as mentioned in [16], most actual
networks are made of highly overlapping cohesive subgroups
of nodes simply because individuals often belong to numer-
ous different kinds of relationships simultaneously. For ex-
ample, each of us may participate in many social cycles ac-
cording to our hobbies, educational background, working
environment and family relationships. As a result, when the
network is large and the overlapping is significant, most of
the existing algorithms in general will have high computa-
tional cost due to their heuristic optimization strategies.

Therefore, the main contribution of this paper is first to
propose an algorithm ComTector which is efficient for the
community detection in large-scale social networks by using
such overlapping nature of the communities in real world
scenarios. Given a large sparse graph, the running time of
our algorithm is O(C×Tri2), where C is the number of the
detected communities and Tri is the number of the triangles
in the given network for the worst case. Then we present a
method for describing and naming the discovered communi-
ties by combining the network topological information with
the vertex natural attributes.

The paper is then structured as follows: in section 2, we
mainly review some related work. Section 3 describes the
community detection algorithm in great details. Section 4
discusses the naming method to define the discovered com-
munities. The experimental results and analysis are pre-
sented in section 5; and we conclude the paper in section
6.

2. RELATED WORK
In social network analysis (SNA), a community is often re-

garded as some kind of cohesive sub-structures[21][24], such
as the cliques[2][7], n-cliques, n-clans, n-plexes[25], as well
as the quasi-cliques[1][17][26]. These dense sub-structures
always impose extra restrictions on the community defini-
tion. For example, the definition of n-clique requires that
the distance between any pair of vertices should be no more
than n, while in a quasi-clique the proportion of the number
of each vertex’s neighbors to the number of all the vertices
in the sub-structure is no less than a threshold value. At the

same time, these sub-structures are usually small in size, and
people may get tremendous number of them, which actually
hides the global organization of the given network. Com-
pared with the defined cohesive sub-structures, hierarchical
clustering[12] is another widely used technique which groups
similar vertices into larger communities in SNA. Donetti and
Munoz[6] have adopted this method by treating the Lapla-
cian eigenvectors of the graph as a similarity measurement
among vertices. The complexity is determined by the com-
putation of all the eigenvectors, in O(n3) time for sparse
matrices. While it does not require us to specify the size or
number of the communities beforehand, this method does
not know when to stop the agglomerative process for the
best division of the network.

Girvan and Newman have introduced a divisive approach[9][10]
which includes the removal of the edges depending on their
betweenness values. By iteratively cutting the edge with
the greatest betweenness value, it uses the Network Modu-
larity Q to get an optimized division of the network with
O(m3) time complexity[14]. Radicchi has proposed a sim-
ilar methodology with GN[19] by using the edge-clustering
coefficient as the new metric. Its time complexity is O(m2)
which is less than that of GN. To improve the computation
efficiency, Clauset, Newman and Moore have also proposed a
fast clustering algorithm[4] with O(n log n) time complexity
on sparse graph which uses a greedy strategy to get a max-
imal ∆Q by merging pairs of nodes iteratively until it be-
comes negative. Pascal Pons and Matthieu Latapy[18] have
designed another clustering algorithm based on the random
walk method to measure the similarity between vertices. It
also uses Network Modularity Q to determine when to stop
the agglomerative process and has O(n2 log n) time com-
plexity.

Other interesting algorithms include Jordi Duch and Alex
Arenas’s extremal optimization method proposed in[8] with
O(n2 log n) time complexity, Aaron Clauset’s method for
finding local community structures in[5], the agent-based al-
gorithm proposed by Ismail Gunes and Haluk Bingol in[11],
as well as the approach based on the information theoretic
framework in [20].

All these current algorithms are successful approaches for
community detection with different backgrounds and appli-
cable scopes. However, the actual social networks are large
sparse graphs with significant overlapping among groups of
vertices[16]. As a consequence, the betweenness based di-
visive algorithms will have very low computation efficiency
while the fast agglomerative method[4]in general can not
give a satisfactory division due to its local optimization
strategy. Therefore, we follow a different track by presenting
an algorithm which can generate a higher network modular-
ity than the fast algorithm while perform more efficiently
than the GN algorithm.

3. COMMUNITY DETECTION
In most social networks, triangles counts are usually high

than they are in nonsocial networks, so our approach for
community detection is based on the enumeration of all
maximal cliques. Each group of the overlapping maximal
cliques is regarded as a certain clustering kernel. We carry
out an agglomerative process to assign the rest vertices to
their closest kernels according to a proposed distance mea-
sure. In the end, the obtained fractional communities will
be properly merged so as to prevent the network from being



divided into too small pieces.

3.1 Problem Formulation
Community detection in networks aims to find groups of

vertices within which connections are dense, but between
which connections are sparser. In this paper, we consider
simple graphs only, i.e., the graphs without self-loops or
multi-edges. Given graph G, V (G) and E(G) denote the
sets of its vertices and edges respectively.

Definition 1. S ⊆ V (G), ∀u, v ∈ S, u 6= v, such that
(u, v) ∈ E, then S is a clique in G. If any other S′ is a
clique and S′ ⊇ S iff S′ = S, S is a maximal clique of G.

Definition 2. For a given vertex v, N(v) = {u|(v, u) ∈
E(G)}, we call N(v) is the set of all neighbors of v. Given
set S ⊆ V (G), N |S =

S
N(vi) − S, vi ∈ S, N |S is the set of

all neighbors of S.

Definition 3. Let Com(G) be the set of all components in
G. The giant component is denoted by CG and M(CG) is
the set of all the maximal cliques in CG. We use VM ⊆ V (G)
to represent the set of all vertices covered by M(CG).

Definition 4. Let P0,P1,...,Pn−1 be the subgraph of G such
that ∀Pi, Pj , V (Pi)∩ V (Pj) = ∅, and V (P0)∪,...,V (Pn−1) =
V (G). For any pair of Pi and Pj , if |E(Pi)| > |(N |Pi ∩ Pj)|,
Pi is defined as a community of G.

Definition 5. Given vertex vi ∈ VM , define Ci = {S|S ∈
M(CG), vi ∈ S} to be the set of all maximal cliques contain-

ing vi, and C the set of all Ci’s. ∀Ci, Cj ∈ C, if
|Ci∩Cj |
|Cj | ≥ f

which is a threshold to describe the extent to which Ci over-
laps with Cj , we call Cj is contained in Ci, denoted by
Cj < Ci. If Ci is not contained by any other element in C,
Ci is called the kernel of G and vi is the center of Ci.

Definition 6. Let K be the set of all kernels in G. VK =
{vi|vi ∈ kj , kj ∈ K} is the set of all vertices covered by K
and IK =

S
(ki ∩ kj), ki, kj ∈ K, i 6= j is the union of all the

vertices that any pair of elements in K has in common.

3.2 Algorithm
ComTector first enumerates all maximal cliques in the gi-

ant component CG. Because a maximal clique is a complete
sub-graph, it is thus the densest community which can rep-
resent the closest relationship involving a single entity in the
given network.

3.2.1 Kernel Generation
For any vi ∈ V (G), Ci is the set of all maximal cliques

containing vi. Every maximal clique in Ci corresponds to
one kind of relationship involving vi, in other words, Ci re-
flects the fact that individuals belong to different kinds of
relationships simultaneously. Since that Ci covers all the
densest communities in which vi has participated, set C re-
flects the statistics of the overlapping communities in net-

works. For any vi, vj ∈ VM , if
|Ci∩Cj |
|Cj | ≥ f (f is an empirical

value), which means all or most of vj ’s relationships are cov-
ered by those of vi, we say vj depends on vi and Cj < Ci.
Otherwise, if ∀Ci ∈ C, i 6= j, Cj ≮ Ci, then Cj becomes the
kernel. Therefore, the larger that the size of Ci can be, the
more likely that a kernel it would become. We rearrange all
the elements of set C according to the descending order of

Figure 1: Overlapping Communities

their sizes and delete those elements whose sizes are smaller
than 2, which means if Ci is a kernel, vi must participate in
at least two different relationships.

Let Ci0 be the element of C whose size is the largest, Ci1

be the element of C whose size ranks second. . . Cin be the
element of C whose size ranks n and etc. K is the set of all
kernels. Ci0 is first picked up and those elements contained
by Ci0 are removed from C. In the next step, each maximal
clique that includes the centers of the left elements in C will
be deleted from Ci0 . If Ci0 is not empty, it is put in K.
Again, the element with the largest size is chosen from the
rest elements of C, such as Cin . Remove it from C, remove
all the elements contained by Cin , and delete each maximal
clique that includes the centers of the left elements in C
from Cin . If there is any maximal clique that contains the
centers of the elements in K, it will also be deleted from Cin

to get rid of unnecessary duplications. If Cin is not empty,
it is put in K. The process continues iteratively until C
becomes empty.

To make things more concrete, an illustrated example is
given as follows on the network shown in Figure 1. C0 =
{{v0, v1, v4, v5}, {v0, v1, v3, v4}, {v0, v2, v3, v4}, {v0, v4, v5, v6}}
with v0 being as the center. C1 = {{v0, v1, v4, v5}, {v0, v1,
v3, v4}} whose center is v1. Apparently C1 < C0, C1 is
not a kernel. Similarly,C2, C3, C4, C5 are also contained
by C0, and C8, C9, C10, C11 are contained by C7. There-
fore, C0 and C7 are two different kernels respectively. The
overall process is depicted in algorithm 1. Each element of
K corresponds to the kernel of a possible community in G.
In fact, the process to generate set K is similar to that of
the classic k-means algorithm for finding the clustering cen-
ter. People may argue that another very intuitive method
to search for the kernels might depend on the degree of each
vertex. All the vertices are sorted by the descending order
of the vertex’s degree, and the set of each vertex together
with their neighbors is regarded as the element of set C for
generating the kernels. Even though this method seems to
be simple and straightforward, doing so can not help us to
find the communities.

The reason is that the vertices contained in communities
do not hold large degree necessarily. The fact that vertex vi

has a large degree only indicates that as a single entity vi

has many connections with others, yet it does not mean vi is



Algorithm 1 FilterOutKernels(C,f)

1: K ⇐ ∅
2: sort C by the descending order of |Ci|, Ci ∈ C
3: {core stores the centers of the filtered out kernels}
4: core ⇐ ∅
5: for Ci ∈ C do
6: contained ⇐ Cj , j 6= i, Cj < Ci

7: independent ⇐ k, k 6= i, Ck ≮ Ci

8: delete Ci from C
9: C ⇐ C − contained

10: for s ∈ Ci do
11: if s ∩ (independent ∪ core) 6= ∅ then
12: delete s from Ci

13: end if
14: end for
15: if Ci 6= ∅ then
16: K ⇐ Ci

17: end if
18: core ← vi

19: end for
20: return K

involved in a large community. In our experiments, we have
found that approximate 40 percent of the top 10 elements
in set C has their centers’ degrees also ranked top 10 on av-
erage. Most vertices in the communities of average size do
not have large degree. Let vk be the center of the element
in C with the smallest size and vd be the vertex with the
maximum degree. We have found that the proportion of the
number of vertex v such that |N(vk)| ≤ |N(v)| ≤ |N(vd)|
to |V (G)| is 75% on average, which is far more than |C|
and thus leads to a low efficiency for generating the ker-
nels. Therefore, whether an individual would participate in
a community also depends on how closely its neighboring
vertices are connected with each other. This is another im-
portant motivation for us to use the overlapping maximal
cliques to find the possible kernels.

The discovered communities will form a partition of the
given network, which requires every pair of elements in K
should not have any vertex in common. As a result, pair-
wise intersection among elements of K will be performed
and all the common vertices will be put in a set IK . For
each vi ∈ IK , we use the Freeman Relative Centrality [21] to
evaluate its positions in the correspondent kernels.

CRD =
|N(vi|
n− 1

(1)

For a given sub-graph SG, the larger CRD(vi) can be, the
more important vertex vi would become in SG. This metric
characterizes the distance between a given vertex and the
corresponding kernels. The maximum CRD value in SG is
denoted by CRDmax. Every vertex vi in IK is then assigned
to its closest kernel based on the value of CRD(vi). Excep-
tionally, if vi has the same maximum relative degree in two
different kernls km and kn, vi will be assigned to the one
whose value |CRDmax −CRD(vi)| is less than the other. Fi-
nally, even if km and kn have the same |CRDmax−CRD(vi)|
value, which is a rather rare case, vi is just assigned to one of
them randomly. The whole procedure is given in algorithm
2. In figure 1, C0 and C7 share v5. Since that the distances
of v5 to C0 and C7 are 0.6 and 0.3 accordingly, v5 is thus
assigned to C0 and removed from C7.

Algorithm 2 DeDuplication(K)

1: IK ⇐ ∅
2: for ki ∈ K do
3: for kj ∈ K, i < j do
4: IK ← IK

S
(ki ∩ kj)

5: end for
6: end for
7: for v ∈ IK do
8: remove v from all the kernels except for the one having

the maximum distance
9: end for

3.2.2 Kernel-based Clustering
Once all the kernels does not have any vertex in com-

mon, each of them is regarded as a clustering center, and
every vertex in V (CG) − VK will also be assigned to their
closest kernels. We adopt a marking strategy to differen-
tiate new vertices from the old ones. All vertices in VK

are first marked as old. Next, every new vertex in the setS
N(ki) − VK , ki ∈ K will be put in a tentative set VE . In

the third step, all vertices in VE are assigned to their closest
kernels and will be marketed as old. As a result, every ker-
nel is now expanded. Again every new vertex in set N |VE is
added to a tentative set VE ’. Then the vertices in VE ’ are
also assigned to their closest kernels and are marked as old.
This process is repeated iteratively until the kernels can not
be expanded any more, which is given in Algorithm 3.

Algorithm 3 AssignVertex(K)

1: for vi ∈ VK do
2: vi is marked as old
3: end for
4: VE ← vertices not marked as old in

S
N(ki)− VK

5: while VE 6= ∅ do
6: for vi ∈ VE do
7: assign vi to its closest kernel ki

8: vi is marked as old
9: end for

10: VE ’← ∅, VE ’← vertices not marked as old in N |VE

11: VE ← ∅, VE ← VE ’
12: end while

3.2.3 Modularity Optimization
Once the clustering process is finished, all the obtained

sub-structures constitute the original division of the net-
work. We adopt the Network Modularity Q to evaluate such
division. Given the p × p symmetric matrix e whose ele-
ment eij is the fraction of all edges in the network that link
vertices in community i to vertices in community j, the row

sums ai =
X
j=0

eij represent the fraction of edges that connect

to vertices in community i. Q is thus defined as
X
i=0

(eii − a2
i ) (2)

This quantity measures the fraction of within-community
edges minus the expected value of the same quantity in a
network with the same community divisions but random
connections between the vertices. If the number of within-
community edges is no better than random, we will get Q



= 0. Values approaching Q = 1, which is the maximum,
indicate strong community structure.

In our experiments, we have found that there exists a
number of fractional communities which are derived from
the corresponding tiny kernels compared with others. The
hidden reason that causes to generate such fractional kernels
is that for a specific Ci, vi may not become the ”real” center
of Ci. In other words, although each maximal clique in
Ci contains vi, it may also include many centers of other
kernels, which means vi is not the expected core figure and
is just a normal individual participating in the social cycles
of other dominating figures. Consequently, even though Ci

would become a kernel, its size would be tiny, because the
maximal cliques involving the centers of other kernels are
all deleted from Ci. As a result, the communities resulted
from these tiny kernels partition the network into too small
pieces.

To address this problem, we propose two approaches to
adjust the original division. In terms of the first one, we
borrow the basic idea from Newman’s fast algorithm to per-
form a local greedy optimization. We iteratively search for
the changes ∆Q resulted from the amalgamation of each
pair of communities, choose the largest of them, and per-
form the corresponding amalgamation until ∆Q becomes
negative. The modularity value of the original division is
Q0. Suppose we first merge community i with j and the
new community is denoted as (ij). We can have

∆Q =


aij − a2

(ij) + a2
i + a2

j i, j is connected
0 otherwise

ai =
Ei

m
Ei is the number of edges in community i (3)

Here, ai is the fraction of edges that connect vertices in
community i and aij is the fraction of edges that connect
vertices in community i to vertices in community j. m is
the number of edges in graph G. Once the initial values of
∆Q and ai are obtained, we use the amalgamation process
of the fast algorithm to increment Q0 by the largest ∆Q
until it becomes negative, which is shown in algorithm 4.

Algorithm 4 AdjustDivision(K)

1: calculate ∆Q from pairs of connected communities
2: while maximal ∆Q > 0 do
3: select the maximal ∆Q
4: join the pair of communities with the maximal ∆Q
5: update the ∆Q matrix
6: end while

With respect to the second method, the fractional com-
munities of the original division whose sizes are under the
average level will be directly merged with the rests. In our
experiments, we have found that the final modularity value
obtained by this straightforward method is often close to
that of the former with even less computational costs. Fi-
nally, the whole procedure of ComTector is given in algo-
rithm 5.

3.2.4 Performance Analysis
From the priori discussion, the enumeration of all maximal

cliques in the giant component by using Peamc[7] will cost
O(∆×MC × Tri2) in the worst case on a single processor,
where ∆ is the maximal degree of G, MC is the size of the

Algorithm 5 ComTector(G)

1: Read Graph G
2: Com(G) ⇐ all components of G
3: M(CG) ⇐ all maximal cliques in CG

4: FilterOutKernels(C,f)
5: DeDuplication(K)
6: AssignVertex(K)
7: AdjustDivision(K)
8: return K ∪ (Com(G)− CG)

maximum clique and Tri is the number of all triangles in G.
To find the kernel set K, we need to traverse all the elements
of C whose size is larger than 2, which will cost O(MC ×
|C|2). The parameter f to identify whether one element of
C is contained by another influences the number of kernels.
Based on our experiments, we suggest it should be larger
than 0.3. Since that VM − VK ≈ V (G), assigning the rest
vertices in VM−VK will cost O(|K|×|V (G)|×I), where I is is
the average times for the process to repeat until K is empty.
In sparse graphs, we have |V (G)| ≈ |E(G)|, |C| < |V (G)|,
|K| ≈ |C|, |V (G)| < Tri2 ¿ |V (G)|2, and ∆ × MC <
|K|. Let C denote the number of the communities in the
original division. The adjustment phase using modularity
optimization will cost O(C × log C). Because C ≈ |K| and
I has the value of 6 according to the small-world property,
the overall cost will be O(C × Tri2) in the worst case.

4. COMMUNITY NAMING MECHANISM
Once all possible communities have been detected suc-

cessfully; one may further ask the question like what the
discovered communities could be? Or since a community
covers some kind of common relationship shared among the
involved entities, could we find out what the relationship is
indeed. Here, we propose a general method to describe a
specific community by combining the topology information
with the natural attributes of the contained entities. The
process is much like making a profile for the given commu-
nity. Suppose we are given two data sets: one is the entity
relational data which is modeled by graph G = {V, E} with
V being the entity (vertices) set and E the relation(edges)
set respectively. The other is the entity attribute data R =
{a0, a1, ..., an−1, rc}, where a0, a1, ..., an−1 are the natural
attributes and rc is the community index number of each
discovered community by the previous process. Based on
G and R, our task is to find some key attribute values to
characterize the given community.

Technically, there exist two challenges for the naming task
itself. On one hand, data gathering and synthesis of G and
R in real applications are rather complicated. Sometimes
there would be even no enough attributes for the entities.
On the other hand, the classic approach to give a profile
for a group of entities is known as rule induction. However,
we are often unable to use this method directly after the
communities are discovered even if the entities have enough
attributes because of the losing of the important topological
information about the internal structure. Therefore, our
naming approach consists of two steps. In the first step, we
are going to find the central entities of each community. In
the second step, several naming mechanisms are proposed
according to the type and number of the attribute values
hold by the central entities.



4.1 Central Entity Resolution
By taking the self-similarity[22] and scale-free properties

into account, we assume that most sub-graphs extracted
from the social networks often have central entities in the
same way like the whole social network often has several
hub nodes. These central entities usually put important im-
pacts on the overall formation and development of the given
community. For example, in collaboration network, the cen-
tral entity of a research team could be a common advisor
who originally started the research area, while in telecom-
munication call network, the central person in a group of
frequently contacted people may be the chief officer in a de-
partment. Therefore, the characteristics of the core figures
greatly influence the properties of the community.

Many methods in literature have been proposed to quan-
tify the centrality of an entity based on the topology of a
given graph, such as degree, relative centrality, betweenness
and PageRank. These approaches can bring us an unique
value U(v) for each vertex v. Generally speaking, the greater
the value is, the more important the vertex will be in the
community. How to find out the central vertices according
to these values is what we actually need to do. If the value
of some vertex is significantly greater than those of the other
vertices, or, if there exists a large gap between two neighbor-
ing vertices, such as v and w with U(v) > U(w), after we
rank all of them according to the centrality measurement
in the descending order, the vertices, whose value is more
greater than that of v, are the central entities of the commu-
nity. Algorithm 6 describes this procedure. In figure 2a, the

Algorithm 6 CentralEntityResolution(C,p)

1: {C is the given community and p is a threshold value}
2: Calculate the centrality of each vertex vi in C
3: v0, v1, ..., vn−1 is arranged by the descending order of

their centrality c0, c1, ..., cn−1

4: i ⇐ 0
5: while i < n− 1 do
6: if

ci−ci−1
ci−cn−1

> p then

7: return {ck|0 ≤ k ≤ i}
8: else
9: i ⇐ i + 1

10: end if
11: end while

relative centrality values of vertices ”PeiDa Ye” and ”Ming
Zhang” are 0.86 and 0.57, which ranks the first and the sec-
ond respectively. The minimum relative centrality value of
this community is 0.03. Since the threshold p actually de-
termines the distance between two neighboring values and
the third ranking relative centrality value is only 0.2 which
is far less than the priori two, the vertices ”PeiDa Ye” and
”Ming Zhang” are thus the central entities which could be
used to define this community. By contrast, in figure 2b,
almost all vertices have similar relative centrality values, so
we use them all together to describe the community.

4.2 Naming Approach
Based on the data sets G and R, we propose the following

approaches to name a specific community. In terms of the
first one, set R only has one element, namely, there exists
only one attribute that the central entities could have. In
such case, the union set of the central entities’ attribute val-

Figure 2: Central Entity Resolution p = 0.6

ues is used to define the given community. With respect to
the second one, there exist as many attributes as possible
to reflect various aspects of an entity. We use an attribute
selection technique to find the most informative character-
istics of the central entities. Here, an attribute can be used
to name the community if its value of the central entity is
not significantly different from that of the non-central en-
tities. A representative value of this attribute among the
central entities is calculated according to its type (discrete
attribute such as sex and address or continuous attribute
such as age and incoming). Otherwise, if the values of an
attribute are absent among all central entities, it can not
be used to name the community. This process is depicted
in algorithm 7. The representative value of attribute a hold
by the central entities is denoted as Ca, the frequency of Ca

among all the entities as FCa , the average value of a as Aa.
To sum up, the above two naming mechanisms should be ap-

Algorithm 7 NamingCommunity(R,Center,p1,p2)

1: {R is the attribute set, Center is the community set,
p1,p2 are two threshold values}

2: if |Center| > 1 then
3: for each attribute a ∈ R do
4: if a is discrete then
5: Ca ⇐ the most frequent value of a among the

central entities
6: else
7: Ca ⇐ average value of a over the central entities
8: end if
9: end for

10: else
11: for each attribute a ∈ R do
12: Ca ⇐ value of a
13: end for
14: end if
15: for each attribute a ∈ R do
16: if a is discrete and FCa > p1 then
17: a is selected as the key attribute
18: return Ca

19: else
20: if Ca−Aa

Aa
< p2 then

21: a is selected as the key attribute
22: return Ca

23: end if
24: end if
25: end for

plied to different practical scenarios. If the entity only has



Figure 3: Zachary Karate Club

one attribute, the value of this attribute hold by the central
entity is used to define the community. If a community has
a few central entities, each of which has several attributes,
we could use the frequent attribute values to name this com-
munity. Suppose that there are n vertices with m attributes
each, and c central entities in the given community. The
time complexity to calculate the centrality, witch depends
on the algorithm of the measurement, is O(T ), so the whole
naming procedure will cost O(T + cm + nm).

5. EXPERIMENTAL RESULTS
In this section, we present a number of applications to

which our ComTector is applied. The algorithm is first
tested on the Zachary Karate Club[27], American College
Football[27], and Scientific Collaboration[28] networks. In
each case we find that our algorithm reliably detects the
known structures. Based on the experimental results, we
have a detailed discussion about the optimization of param-
eter f .

In the end, ComTector is further tested on the large Telecom-
munication Call networks (T.C.) to illustrate the global struc-
tural properties of the large-scale social networks. All ex-
periments are done on a single PC (3.0GHz processor with
2Gbytes of main memory on Linux AS3 OS). We use a very
efficient parallel algorithm Peamc to enumerate all maxi-
mal cliques. In the telecommunication call networks, Peamc
runs on the DAWN Cluster (3.2GHz Processor with 2Gbytes
of main memory on each node, Linux AS3 OS) by using 20
processors, while for the other networks, Peamc just runs on
a single processor.

5.1 Zachary Karate Club
Zachary Karate Club is one of the classic studies in so-

cial network analysis. Over the course of two years in the
early 1970s, Wayne Zachary observed social interactions be-
tween the members of a karate club at an American univer-
sity. He built network of connections with 34 vertices and
78 edges among members of the club based on their social
interactions. By chance, a dispute arose during the course
of his study between the club’s administrator and the karate
teacher. As a result, the club splits into two smaller commu-
nities with the administrator and the teacher being as the
central persons accordingly. Figure 3 shows the detected
two communities by ComTector which are exactly matched
with the result of Zachary’s study.

5.2 American College Football

Figure 4: American College Football

As another test of ComTector, we turn to the network
of American College Football. This network represents the
schedule of Division I games for the 2000 season. It consists
of 115 vertices and 616 edges which are the representations
of football teams and regular season games among them re-
spectively. During the 2000 season, all of the 115 teams are
divided into 12 conferences containing around 8 to 12 teams
each. Games are more frequent between members of the
same conference than between members of different confer-
ences. Apparently, each conference can be considered as one
community of the network.

Applying ComTector to this network, we have found that
it identifies the conference structure with a success percent-
age of 93.8% shown in Figure 4. Almost all teams are cor-
rectly grouped with the other teams in their conferences.
The few cases where the algorithm fail actually correspond
to the scheduling of the game. For example, LouisianaMon-
roe team, MiddleTennesseeState team and LouisianaLafayette
team in Sun Belt are misclassified with LouisianaTech in
Western Athletic as a single group. Independents confer-
ence is broken into two groups with its team UtahState be-
ing misclassified into Western Athletic. In all other respects
however it performs remarkably well.

5.3 Scientific Collaboration Network
The data of the collaboration network is obtained accord-

ing to the 1990 published papers from the year 1998 to 2005
indexed by SCI, EI and ISTP in Beijing University of Posts
and Telecommunications(BUPT). Each author corresponds
to a vertex of the network and there is an edge between two
vertices if the two correspondent authors have collaborated
in a paper. A great deal of work has gone into disambigua-
tion of similar names, so co-authorship relationships are rel-
atively free of name resolution problems. We split the title
of each published paper of a given author into some key
phrases by getting rid of the unnecessary prepositions, arti-
cles as well as several nouns and adjectives that frequently
appear with very general meaning, such as system, algo-
rithm, new and etc. These key phrases are then used as the
value of the research area attribute hold by each author. By
using our naming approach, we present a map of scholarship



Figure 5: All Discovered Communities and the De-
scriptions

in Figure 5. Each community in the Periphery area is an
independent small component of the network, and the Core
area corresponds to the giant component with each vertex
being the representation of the corresponding community.
The edge between two adjacent vertices indicates that two
communities have some overlapping parts. By zooming onto
the vertices of the Core area, we come to the detailed de-
scription of each specific named community. In this magni-
fied picture, the color of each community is the same as that
of the vertex in the Core area. The vertices in every com-
munity are the central persons being as the representatives
of the research group. The solid lines among these vertices
show that the central persons of the given communities have
collaborated together, while the dashed lines mean that the
rest persons other than the central ones of the correspondent
communities have once collaborated with each other. The
color of each community from red to deep blue indicates the
research contribution by the descending order according to
the number of the published papers indexed by SCI, EI and
ISTP.

Another scientific collaboration network is the network
of coauthorships between scientists posting preprints on the
Condensed Matter E-Print Archive between Jan 1, 1995 and
March 31, 2005. It consists of 39577 vertices and 175693
edges. Table 1 gives the numerical results on both of the two
networks. In fact, for the GN algorithm, the computation of
the maximum edge betweenness value makes it inefficient on
large-scale networks. With respected to Newman’s fast algo-
rithm, it uses a local optimization policy by searching for the
maximal increment of the Network Modularity Q. However,

Table 1: Scientific Collaboration Networks
BUPT (1667 vertices, 4487 edges)

Algorithm Result Q Time
GN 79 0.85 403s

Newman Fast 85 0.43 2.4s
ComTector 81 0.83 1s

E-Print Archive (39577 vertices, 175693 edges)
GN n/a n/a >24h

Newman Fast 1363 0.31 3.7h
ComTector 1056 0.65 2.2h (25s clique time)

Table 2: Erdös Collaboration Network
Erdös 97 (5482 vertices, 8972 edges)

Algorithm Result Q Time
GN n/a n/a >5h

Newman Fast 68 0.43 29s
ComTector 49 0.69 23s (1s clique time)

Erdös 98 (5816 vertices, 9505 edges)
GN n/a n/a >5h

Newman Fast 69 0.34 35s
ComTector 38 0.69 26s (1s clique time)

Erdös 99 (6094 vertices, 9939 edges)
GN n/a n/a >5h

Newman Fast 66 0.35 40s
ComTector 38 0.69 27s (1s clique time)

the changes of Q is not a monotonous process. Although
fast algorithm can get a maximal value of Q, this value may
be too far from the maximum one. Compared with fast al-
gorithm, which starts its clustering process from each single
vertex, the process of ComTector that generates all the pos-
sible kernels by using the overlapping of the maximal cliques
directly locates the densest part of each community, which
can quickly bring about a more faster convergence. Conse-
quently, in large sparse graphs, ComTector usually performs
better than the fast algorithm while becomes more efficient
than the GN algorithm.

Paul Erdös was one of the most prolific mathematicians
in the history, with more than 1500 papers to his name. He
is also known as a promoter of collaboration and as a math-
ematician with the largest number of different co-authors,
which was a motivation for the introduction of the Erdös
number collaboration network[29]. Patrick Ion (Mathemati-
cal Reviews) and Jerry Grossman (Oakland University) col-
lected the related data (Grossman and Ion, 1995, Grossman,
1996) which are updated annually through 1997 to 1999. Ex-
perimental results are given in table 2.

5.4 Telecommunication Call Network
In the algorithm, the possible values of parameter f affect

the ultimate outcome of the partition. We adopt Newman’s
Q modularity to evaluate the strength of the detected com-
munity structures. f determines the kernels’ number in the
given network, which in turn has an influence on the Q value.
Figure 6 shows this kind of relation in the American College
Football, and the Scientific Collaboration network respec-
tively. If f is too large, it will cut the network into smaller
pieces. For each community i, eii tends to be small and ai

is relatively large, which further causes Q to decrease. As
a result, in Figure 6, we see when f ∈ (0.3, 0.5), Q often
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Figure 6: Network Modularity Q and f

reaches its maximum value on average.
According to the priori analysis, ComTector is further

tested on two large telecommunication call networks, which
are built upon the datasets in a city and in a province within
the period of one month from a Telecom Operator in China.
The first one consists of 512024 vertices and 1021861 edges,
and the second one includes 845750 vertices and 1544834
edges. We regard each subscriber as a single vertex and two
vertices will share an edge if the subscribers have once con-
tacted with each other by their mobile phones. Because each
individual can have connections with others for various rea-
sons and relationships, the telecommunication call networks
often have significant overlapping among the detected com-
munities. We have detected 28033 and 2171 communities in
these two networks with 0.60 and 0.64 Q value respectively
within the period of 2h, while neither GN nor Newman Fast
can generate satisfactory results in an acceptable time frame.

Looking at the large communities in the networks, we
have found that they often tend to consists of people who
have close consumption levels, similar ages or live in the
same areas. Figure 7 gives the description results on the
telecommunication network. In our studies, p1 = 0.6 and
p2 = 0.4, which are the empirical values and the relative
degree is used as the centrality measurement. In Com-
munity 70, we can see that all subscribers share the same
home address (HOME ZIP CODE) and their consumption
levels are also similar according to their average bill fee
(BILL FEE Mean). Meanwhile, the subscribers in commu-
nity 61 correspond to a typical portion of the client market
for their close consumption levels and the similar age 32, and
Community 64 is a young social cycle apparently. To some
extent, these obtained community structures and the corre-
spondent common factors are useful clues for the Telecom
Operator to adjust their client market policies.

6. CONCLUSIONS
In this paper, we have followed a different track by propos-

ing a new method ComTector for the community discovery
in large-scale social networks. Directly based on the over-
lapping nature of communities in our real world, ComTector
can extract meaningful results on networks whose commu-

Figure 7: Some defined communities in the telecom-
munication call network

nity structures are known before. Our method consists of
three critical steps. For the first step, we adopt a signifi-
cantly efficient algorithm to enumerate all maximal cliques
in the given network. The overlap of several maximal cliques
corresponds to various relationships and connections each in-
dividual may participate in directly. The gathering of maxi-
mal cliques forms the kernels of every potential community.
For the second step, we use an agglomerative technique to
iteratively add the left vertices to their closest kernels based
on the relative degree matric. For the third step, the origi-
nally obtained clustering results will be adjusted by merging
pairs of fractional communities to achieve a better Network
Modularity. The finally obtained community structures to-
gether with other components constitute the ultimate par-
tition of the network.

We have demonstrated the efficiency and utility of Com-
Tector over a number of practical examples. Experimental
results on true life networks show that ComTector can ex-
tract meaningful communities that are agreed with both of
the objective facts and our intuitions. Further, we apply
ComTector to analyze networks whose structures are other-
wise difficult to understand, such as scientific collaboration
and telecommunication call network. Moreover, we also pro-
pose a general naming method to describe and explain the
discovered communities by combining the topological infor-
mation with the entity attributes. Going through the de-
tailed descriptive information concerning each community
to the high level abstracted map of their organization, we
are able to have a better understanding about the global
properties of the whole network.

For the future work, we will continue our research by fo-
cusing on the evolution of the community as well as the
network backbone by using time series analysis. We will
also search for more refined theoretical models to describe
the relationship between the knowledge diffusion mechanism
and the community membership in social networks to have
a deeper understanding of the network dynamics from both
of the micro and macro perspectives.
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