
A Parallel Algorithm for Enumerating All Maximal Cliques in Complex Network 
 
 

Nan Du, Bin Wu, Liutong Xu, Bai Wang, Xin Pei 
Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia,  

School of Computer Science and Technology, Beijing University of Posts and Telecommunications, 
Beijing 100876, China 

{dunan,wubin,xliutong,wangbai}@bupt.edu.cn 
 
 

Abstract 
 

Efficient enumeration of all maximal cliques in a given 
graph has many applications in Graph Theory, Data 
Mining and Bioinformatics. However, the exponentially 
increasing computation time of this problem confines the 
scale of the graph. Meanwhile, recent researches show 
that many networks in our world are complex networks 
involving massive data. To solve the maximal clique 
problem in the real-world scenarios, this paper presents a 
parallel algorithm Peamc (Parallel Enumeration of All 
Maximal Cliques) which exploits several new and 
effective techniques to enumerate all maximal cliques in a 
complex network. Furthermore, we provide a performance 
study on a true-life call graph with up to 2,423,807 
vertices and 5,317,183 edges. The experimental results 
show that Peamc can find all the maximal cliques in a 
complex network with high efficiency and scalability. 

 
1. Introduction  
 

Graph-based link mining is a new research field of the 
data mining technology, which emphasizes the 
interrelationship among different entities. Lots of 
researches now focus on the sub-structures [1,2,14] of a 
single graph to find some common relation patterns, 
among which the maximal clique is a very important one. 
Many existing algorithms for enumerating all maximal 
cliques, including Bron’s BK algorithm[8], Sukyuama’s 
algorithm[9], and Kazuhisa’s algorithm[10] involve the 
depth-first traversal of a search tree with specific pruning 
policies, while Kose’s algorithm[11] is based on the 
Apriori-like concepts. It takes advantage of the fact that 
every clique of size k, where k≥2, is comprised of two 

                                                        
This work is supported by the National Science Foundation of 
China under grant number 60402011and the co-sponsored 
project of Beijing Committee of Education SYS100130422  

cliques of size k-1 that share k-2 vertices. However, the 
exponentially increasing time for the computation 
confines the scale of the graph and most of the above 
algorithms are based on the random networks. Recent 
researches indicate many real-world networks are 
complex networks which are large sparse graphs with the 
properties of short average path-length, power-law degree 
distribution and high clustering coefficient.  

The main contribution of this paper is to provide a 
parallel algorithm Peamc for enumerating all maximal 
cliques in the large complex networks. Given a graph G 
with n vertices and m edges, in the worst case, Peamc 
runs with O((Δ×Mc ×Tri2)/p) time delay and in O(n+m) 
space using p processing elements, where Δ is the 
maximum degree of G, Mc represents the size of the 
maximum clique and Tri denotes the number of all 
triangles in G respectively. The rest of the paper is 
structured as follows. Section 2 presents and analyzes 
the algorithm Peamc. Section 3 shows a systematic 
performance study of the experiments with real datasets 
taken from a mobile telecom carrier. Section 4 
introduces the real world applications of Peamc and 
finally some conclusions and future work are provided in 
section 5 

 
2. Algorithm Peamc 
 

For the graph G, V(G) and E(G) denote the set of 
vertices and edges of G. For a vertex v, set τ(v) represents 
the neighbors of v. Since v has |τ(v)| neighbors, v and these 
neighbors could constitute α=|τ(v)|×(|τ(v)|-1)/2 triangles at 
most. We assume the actual number of triangles is β, then 
β/α denoted by ε is called the clustering coefficient of v 
and we use σ(v) to store all the vertices that could 
constitute triangles with v and its neighbors. A complete 
sub-graph of G is called a clique. If a clique is not 
contained in any other cliques, this clique is called a 
maximal clique.  



2.1 Basic Idea and Method 
 
Since that the triangle structure or 3-clique is a basic 

sub-structure of any clique whose size is larger than 3. It 
has a close relationship with the clustering coefficient 
property of the complex network. We could take 
advantage of this fact to design our traversal policy for the 
vertices which are contained in triangles by depth-first 
order, so that the maximal cliques can be detected with 
high efficiency. Because each search tree rooted with 
every vertex in G will be traversed, all the candidate 
cliques will thus be identified. To determine whether the 
candidate clique is a maximal clique, we present the 
following theorem.  
Theorem 1. Let clique VS ⊆ , S is a maximal clique of G, 
if and only if for any v∈S and u∈τ(v)-τ(v)∩S, we have 

( )uS τ⊄ .                                     □ 
Proof: Assume S is a maximal clique. If for any v∈S and 
u∈τ(v)-τ(v)∩S such that ( )uS τ⊂ . Then S is a clique with 
ε=1. Therefore, set {u}∪S is also a clique. However, we 
had S a maximal clique earlier, which means there is no 
superset of S being a clique, a contradiction. Assume for 
any v∈S and u∈τ(v)-τ(v)∩S, such that ( )uS τ⊄ , which 
means at least there exists one vertex t∈S such 
that ( ) Etu ∉, . Thus, for any u∈τ(v)-τ(v)∩S ,  ε≠1 holds 
and S is a maximal clique.                       □ 
 
2.2 Pruning by Prediction 
 

Peamc employs a pruning policy explained as follows. 

 
Figure 1. 4-clique 

In Figure 1, we start from node 0 and choose node 1 
from τ(0). After {0,1,2,3} is detected, we continue to 
choose node 2. However, we find {0,2,3} is not a 
maximal clique. This traversal contributes nothing. 
Consequently, we add a new set η(v0) that caches the 
maximal cliques obtained from the search tree rooted with 
v0. After σ(v0) is calculated, we will first merge the 
current candidate clique with σ(v0) and check whether 
η(v0) contains the merged set. If so, the merged set will 
not be a maximal clique and the next traversal steps 
starting from the current candidate clique will be pruned. 
This pruning with prediction often improves the efficiency 
by a factor of 15% on average. This basic algorithm is 
summarized in Figure 2. 
 
 

Input: a large sparse graph G = (V, E); 
Output: the complete set of all maximal cliques; 
Method: 
1: Read graph G 
2: Generate set τ(v) for every vertex of G 
3: for each vertex v of G 
4: call recursive_find_cliques({v}, τ(v)) 
5: end for 

Function: recursive_find_cliques (x, τ) 
7: for each vertex t∈τ by the ascending order 
8: calculate set σ 
9: if σ≠ Ø 
10: extend x with t 
11: call recursive_find_cliques (x, σ) 
12: end if 
13: else // Theorem 1. 
14: end for 

Figure 2. Algorithm Peamc: the basic case 
 
2.3 Parallel Model of Peamc 
 

The enumeration of all maximal cliques is a NP 
problem and the basic algorithm requires each search tree 
rooted with every vertex of G to be traversed. Based on 
the fact that every search tree’s traversal is independent 
with each other, to make the network that our algorithm 
can handle large enough in scale, we provide a parallel 
model of Peamc. Since that every vertex is accessed by 
the ascending order of its index, there will be no duplicate 
triangles and candidate cliques. Therefore, we have the 
following theorem. 
Theorem 2. The enumeration of all maximal cliques in 
graph G with n vertices could be partitioned into n 
independent enumerations of all the maximal cliques from 
the search tree rooted with the correspondent vertices. □ 

Practically, the number of processing elements on the 
existing parallel platform P is often smaller than n. Thus a 
mapping scheme is required. We first sort the vertices of 
G by the descending order of their indices and define the 
partition ρ on a single processing element p as follows: 









+



== 1...1,0

P
niviρ  

( )



≠−−×+
=+×

=∈=
0,11

0,
,,

2

2
i

i
p

jji pPi
IPi

jVuuv  

Let ( )   )1//()( 1

0
+= ∑ +





pnvP
n

iτλ .This mapping 

scheme gives most partitions a proper λ, which improves 



the efficiency by a factor of 30% on average. 
 
2.4 Analysis of Peamc 

 
Based on the experimental results of our research, we 

find that the distribution of the maximal cliques whose 
size varies from 3 to Mc also holds a power-law feature, 
where Mc represents the size of the maximum clique. Let x 
denote the size of a maximal clique and y denote the 
number of the maximal cliques with size x. we have y=kx-α. 
For the traversal of the search tree rooted with vertex v0, 
the calculation of σ from v0 costs ∆×[a0×(k×3-α)]2 time 

units 0≤a0<1, where ∆ denotes the maximum degree of G. 
If σ≠Ø, the calculation of σ’ will cost ∆×[a1×(k×4-α)]2 time 
units 0≤a1<1. If σ’≠Ø, the calculation of σ’’ will cost 
∆×[a2×(k×5-α)]2 time units 0≤a2<1. This process proceeds 
recursively until σ=Ø Since Mc denotes the length of the 
deepest path from the root to the leaf, the time to 
enumerate all the maximal cliques by traversing a single 
search tree is represented as: 

( ) ( ) ( ){ } [ )1,0,43 00

3

0

1

0

0

222
0 ∈××++××+×××∆= −−−

−

T
ic

TaTT aMkakakaT
cM

αα  

Because Peamc requires traversing each search tree rooted with every vertex of G, the total runtime TS is defined as: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }2222221

0

1

3

0

3

1

0

0

0
3 −

−−

− ++×++++×== −−
−

=
∑ n

cMcM

n TT
c

TT
n

i
is aaMkaakTT αα  [ )∑

−

=

=∈
1

0

1,1,0
n

j

T
i

T
i

jj aa   

Since ( ) ( )[ ] ( ) ( )[ ] 1
222

1

0

0

0

1

0

0

0
=++<++ −− nn TTTT aaaa , 

then ( ) ( ){ } ( )222 33 ααα −−− ×××∆<×++×< kMMkkT ccs  

Moreover, because all vertices of G are accessed by the 
ascending order of their index, which eliminates many 
duplicate results, and the pruning policy with prediction 
also reduces the search space greatly when the maximal 
cliques grow large, the actual runtime is much smaller 
than TS. Thus, to enumerate all the maximal cliques in G, 
it will cost O(∆×Mc×Tri2), where Tri=(k×3-α) The loading 
of G consumes O(n+m) space. If we have n processing 
elements, according to theorem 2, it will cost 
O((∆×Mc×Tri2)/n) on average. 
 
3. Experiment 
 

To evaluate the performance of Peamc, we also 
implement Bron’s BK algorithm and Kazuhisa’s 
algorithm. Our experiments are done on a DAWN Cluster 
(84 3.2GHz processors with 2Gbytes of main memory on 
each node, Linux AS3). These algorithms have been first 
examined with random graphs. Given r and n, we build a 
graph with n vertices such that vi and vj are adjacent with 
probability 0.5 if i+n-j(mode n)≤r or i+n-i(mode n)≤r. 
Then they are challenged with the complex networks and 
Peamc is also evaluated on large sparse call graphs built 
by real data taken from one telecom carrier for months in 
a city. The runtime in tables is expressed in seconds and 
we give the following notations for short: M.D. stands for 
Max Degree, M.C. for Maximal Cliques, Mc is the size of 
the maximum clique, Ka for Kazuhisa’s Algorithm, BK 

for Improved BK, Pn for Peamc on n processing elements 
and s stands for speedup in the end. 

Table 1. Comparison on random networks 

G r=10 R=30 
|V| 1000 2000 4000 1000 2000 4000 
|E| 4534 8938 17987 14432 28709 58063 

M.D. 16 16 24 64 82 92 
M.C. 2239 4396 8894 19269 38060 78054 
Mc 6 6 6 8 8 8 
Ka 7 27 116 275 1006 12464 
BK 0.5 4 29 0.7 4 31 
P1 0.2 0.4 0.9 29 56 123 
P30 0.01 0.02 0.04 1.69 3.27 6.49 

 

Table 2. Comparison on complex networks 
G 1 2 3 4 5 
|V| 579 1161 2301 4557 8760 
|E| 500 1000 2000 4000 8000 

M.D. 43 44 45 57 81 
M.C. 4 11 26 61 183 
Mc 3 4 5 5 6 
BK 0.112 0.740 6.032 42.22 313.5 
Ka 0.027 0.052 0.105 0.208 0.403 
P1 0.0005 0.0014 0.0038 0.0083 0.0222 

Peamc is also evaluated on large sparse call graphs 
built by real data from one telecom carrier for months in a 
city shown in Table 3. 



Table 3. Results on 10 large sparse call graphs 

G 1 2 3 4 5 6 7 8 9 10 
|V| 512024 503275 540342 539299 543856 531444 529280 531861 562244 594186 
|E| 1021861 900329 1030489 1014800 1034291 1020716 1012299 1007487 1060121 1152470 

M.D. 673 731 980 2396 1355 913 1291 1134 1922 1310 
M.C. 153362 118353 143259 139040 145569 148570 145809 144434 151039 168285 
Mc 14 13 14 15 17 16 18 19 17 21 
P1 58 23 43 55 76 380 128 223 130 403 
P30 4 1 6 18 18 169 43 64 24 98 

 

 
Figure 3 Distribution of the maximal cliques. The 
X axis represents the maximal clique size. The Y 
axis denotes the number of the maximal cliques 
in base-10 logarithm. 

 
In Table 1, Improved BK’s performance keeps stable 

regardless of |E|. While, in the case of r=30, as |V| grows 
large, the clustering coefficient of every vertex is also 
increasing, thus Peamc outperforms Improved BK 
gradually. Our implementation of Kazuhisa’s algorithm is 
optimized for the spares graph according to his paper with 
О(Δ4) time delay, Kazuhisa’s algorithm performs better 
in table 2 than in table 1. For the complex network, the 
distribution of the maximal cliques is confined by the 
power-law property shown in Figure 3. However the 
growth of the maximum degree of G does not have such 
limitation. Because most complex networks are large 
sparse graphs, our researches and experiments show that 
the growth of the number of the triangles is much slower 
than the growth of the maximum degree. Moreover, the 
size of the maximum clique is also much smaller than the 
maximum degree. Therefore, Peamc outperforms 
Kazuhisa’s algorithm, which is shown in Table 2. In Table 
3 we can find that the pruning policy with prediction 
becomes more efficient with groups having larger 
maximum cliques because the prediction becomes more 
accurate as the size of the maximal cliques grows large. 
The larger the maximum clique grows, the more efficient 
the pruning will become. 

Furthermore, Peamc is challenged with another call 
graph of a month in a province with up to 2423807 
vertices and 5317183 edges. We find 801381 maximal 
cliques using 70 processors in 26469 seconds and the size 
of the maximum clique is 26. Thus, we see that Peamc 
runs efficiently on the complex network. 
 
4. Application 
 

In our research, we use Peamc to enumerate all the 
maximal cliques in ten large sparse call graphs shown in 
Table 2 from graph 1 to 10. In Figure 4, we focus on the 
customer denoted by ▲. The gray filled circles represent 
the customers of the maximum 21-clique and those white 
blank circles denote their neighbors which are also 
involved in maximal cliques in the 10 months. We see that 
▲ first appears in Jan and constitutes a triangle with other 
two persons in the quasi 19-clique (most pairs of its nodes 
are connected directly) which is part of the maximum 
21-clique. ▲ has more connections in the following 
months indicating he or she gradually joins in the social 
circle of the 21 customers and becomes a new VIP 
customer to the telecom career. Figure 4 also shows that 
only 19 persons of the maximum 21-clique have appeared 
in Jan and only after May, another two persons denoted by 
the black filled circles join in the network. The degree of 
these two persons is increased sharply in Jun and keeps 
stable in the later months, which means these two persons 
are likely to know most of the 19 customers before and 
are recommended to use the same network with them, 
which is good to the telecom career’s business. Moreover, 
we find that more and more other customers appearing as 
small white nodes inside the maximum 21-clique depend 
on this structure heavily and together they constitute a 
bigger quasi clique. On the contrary, Figure 5 gives the 
shrinking process of a maximal 9-clique from Mar to Jun. 
The shrinking of the maximal clique among the call 
graphs has a close relationship with the specific time and 
the composition of the structure. After one person in the 
9-clique quitted in Apr, the whole structure shrank sharply 
in May. Thus, we can infer that this person holds an 
important position and has a heavy influence on the others 



in the community of the 9 persons.  If we can retain such 
kind of customer in advance, more lost profits will be 
prevented, which is another piece of good news to the 
telecom career.  

 
Figure 4. Maximum 21-clique evolution 

 

Figure 5. Maximal 9-clique shrinking 
 
5. Conclusion and Future Work 
 

In this paper, a novel parallel algorithm Peamc is 
provided, which exploits several effective techniques to 
efficiently enumerating all maximal cliques in complex 
network. Since most networks in our real world conform 
to the complex network model, our algorithm enjoys more 
attractive advantages in practice. A comprehensive 
performance study to compare Peamc with the existing 
algorithms on the real data sets has illustrated that Peamc 
is more efficient and scalable. Moreover, a promising 
application is shown to present and model the 
sub-structures’ evolution and shrinking[12] among 
continuous sparse call graphs in the end. 

To the future work, we will continue our research on 
interpreting the basic sub-structures of the complex 
network such as the quasi clique[14] and frequent 
sub-graphs, and focus on these structures’ evolution by 
the time series analysis to have a better understanding of 
the network’s dynamicity. 

References 
 
[1] R. Milo, Network Motifs: Simple Building Blocks of 
Complex Networks, Science (2002), 824 
[2] M. E. J. Newman, The structure and function of complex 
networks, 2003 Society for Industrial and Applied Mathematics 
[3] D.S. Johnson, On generating all maximal independent sets, 
Info. Proc. Lett., 27 (1988) 119 – 123 
[4] T. Eiter and K. Makino, On computing all abductive 
explanations, Proc. AAAI ’02, AAAI Press, pp.62 – 67, 2002 
[5] R. Agrawal and R. Srikant, Fast algorithms for mining 
association rules in large databases, Proc. VLDB ’94, 1994. 
[6] Faisal N. Abu-Khzam, On the relative efficiency of maximal 
clique enumeration algorithms, with application to 
High-Throughput computational biology. Proceedings, 
International Conference on Research Trends in Science and 
Technology, Beirut, Lebanon, 2005 
[7] Etsuji Tomita, The worst-case time complexity for generating 
all maximal cliques, COCOON 2004, LNCS 3106, 2004. 
[8] C. Bron and J. Kerbosch, Algorithm 457: Finding all cliques 
of an undirected graph, Proceedings of the ACM, vol. 16, 1973 
[9] S.Tsukiyama, A New Algorithm for Generating all the 
Maximal Independent sets, SIAM J. COMPUT. Vol. 6. 1977. 
[10] Kazuhisa Makino, Takeaki Uno, New Algorithms for 
Enumerating All Maximal Cliques, SWAT 2004 
[11] F. Kose, Visualizing plant metabolomic correlation 
networks using clique metabolite matrices, Bioinformatics, 2001 
[12] Jure Leskovec, Jon Kleinberg, Christos Faloutsos, Graphs 
over Time: Densification Laws, Shrinking Diameters and 
Possible Explanations, KDD conference, 2005 
[13] Kunal Punera, Joydeep Ghosh, CLUMP: A Scalable and 
Robust Framework for Structure Discovery, icdm conference 
2005  
[14] Jian Pei, Daxin Jiang, Aidong Zhang, On Mining 
CrossGraph QuasiCliques, KDD conference, 2005 


