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ABSTRACT
Recent researches have seen that rich interactions among en-
tities in nature and society bring about complex networks
with community structures which could represent interact-
ing patterns in protein-protein networks, or circles of friends
and families in social networks. Although the investigation
of the community structure has motivated many kinds of
algorithms, most of them only find separated communities.
However, for the vast majority of real-world networks, few
communities really disjoint with each other. As a matter of
fact, they often overlap to some extent. Being contrary to
earlier methods, in this paper, we propose a new algorithm
COCD(Clique-based Overlapping Community Detection)
to efficiently mine overlapping communities in large-scale
networks. COCD is only based on the network topology
and does not require any priori knowledge about the original
partition of the network. We find that the extent to which
communities overlap with each other actually depends on
the specific types of the links in the network.

Moreover, due to the frequent changes of the interactions
among entities, the associated networks are able to develop
and evolve over time. Consequently, uncovering the under-
lying micro mechanisms that govern the dynamics of the
various communities is critical to have a better understand-
ing of the macro network evolution as a whole. Therefore,
based on COCD, we propose a novel method to track the
evolution of communities in a series of time snapshots. We
show that the community’s lifetime and persistence depend
not only on its internal structure, but also on the consti-
tution of the network. Our studies on the real networks
from different domains demonstrate that the existence and
evolution of overlapping communities has meaningful and
non-trivial statistics.
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1. INTRODUCTION
In recent years, people have found that both of the physi-

cal systems in nature and the engineered artifacts in human
society have essentially networked organizations which are
large intricate webs of connections between the massive en-
tities they are composed of[20][21]. Although these systems
come from very different domains, they all have the com-
munity structure in common, that is, they have vertices in a
group structure that vertices within the groups have higher
density of edges while vertices among groups have lower den-
sity of edges[8][14]. For instance, the communities in World
Wide Web correspond to topics of interest. In social net-
works, individuals belong to the same community tend to
have similar preference. As a result, the ability to discover
communities has important practical significance and can
help us to achieve a better understanding of the network.

A wide range of successful algorithms[1][5][10][13] have
been developed to discover the community structures. These
methods assume that communities are separated, placing
each vertex in only one cluster. However, as first mentioned
in [16], most real networks are made of overlapping and
nested community structures. Few communities totally dis-
joint with each other. For example, in social networks, each
of us may participate in many social cycles according to our
hobbies, educational background, working environment and
family relationships; In collaboration networks, an author
might work with researchers from different groups; In bio-
logical networks, a protein might interact with many groups
of proteins, and in word association network, a single word
may be involved in various clusters of words with different
concepts and meanings. As a result, most existing algo-
rithms can not detect them directly. Only a few methods can
uncover the overlapping community structures, yet they are
generally not efficient enough in real networks. Therefore,
to address this problem, we propose a new algorithm COCD



which can efficiently mine overlapping communities in large-
scale networks. To the best of our knowledge, COCD is the
first method that can handle networks consisting of millions
of nodes and edges. Experimental results in the networks
of different domains indicate that the overlapping between
communities is correlated with the meanings and types of
the edges. In addition, networks generally evolve[3][15] and
develop over time. Sine that communities constitute the
whole network as certain function units, we are also inter-
ested in answering the questions like: How can a specific
community persist and evolve over time? What is the dif-
ference of the communities’ evolving patterns between social
networks and non-social networks? Do the abrupt changes
of the evolution indicate some unexpected events? So, we
propose an algorithm to study the time dependence of over-
lapping communities and describe the underlying dynamics.

The main contributions of this paper concentrate on both
of the static and dynamic properties of the overlapping com-
munities. In terms of the static aspect, a novel algorithm
COCD is proposed to mine the overlapping communities,
which requires no user input parameters, such as the num-
ber of communities, the original community partition, or
any other thresholds. With respect to the dynamic aspect,
a new method is presented to track and monitor the evolv-
ing process of various overlapping communities in networks
from different domains.

The rest of the paper is organized as follows: section 2
reviews the related work. Section 3 describes the overlap-
ping community detection algorithm. Section 4 discusses
the proposed method for monitoring the community evolu-
tion. Experimental results are presented in section 5; and
we conclude the paper in section 6.

2. RELATED WORK
Here we review the related work from two areas: mining

overlapping communities and tracking community evolution.

2.1 Overlapping Community Detection
Steve Gregory has proposed CONGA(Cluster-Overlap New-

man Girvan Algorithm) by extending GN algorithm[8] based
on the betweenness centrality value. CONGA[9] introduces
a splitting betweenness to identify when to split vertices,
what vertex to split and how to split it. Because vertex
can be split into multiple copies, single vertex can thus ap-
pear in many clusters simultaneously. Since that CONGA
is still based on the framework of GN, its time complexity
is O(m3) in the worst case. Pinney and Westhead [17] have
also proposed extending the GN algorithm with the abil-
ity to split vertices between clusters. It is based on both
of the edge betweenness and vertex betweenness to decide
whether to split a vertex or remove an edge, which requires
an user input value to assess the vertex similarity. Palla
et al [16] proposed a k-clique based method. He defined a
community as the set of k-cliques that can all be reached
from each other via a sequence of adjacent k-cliques; two
k-cliques are adjacent if they share k−1 vertices. One prob-
lem of this method is that the required user input value k
often has a significant impact on the discovered communi-
ties. Moreover, vertices that are not included in any k-clique
will be ignored, so the set of all the detected communities
usually can not cover all the vertices of the original graph.
Shihua Zhang et al. find overlapping clusters by extending
GN algorithm[22] with the fuzzy c-means clustering, yet it

requires a user input variable to indicate an upper bound
of the community’s number, which is often hard to give in
real networks. Li et al.[12] detect clusters by combining the
network topology with the content of the vertices. It first
finds the densely connected subgraphs of the network, and
then add triangles and edges whose keywords are similar to
those of the subgraphs.

To sum up, the GN -based extensions generally have the
efficiency problem, and the modularity optimization strat-
egy used by GN introduces a resolution limit[6] as well(we
are unable to detect communities smaller than

√
2m), while

the other existing methods often require more information
from the users. To overcome these shortages, we design
COCD by a local optimization strategy, which does not suf-
fer from the resolution problem, and does not require any
priori knowledge about the communities’ number or other
related thresholds to assess the community structures.

2.2 Community Evolution
Aggarwal et al.[2] focused on an On-line Analytical Pro-

cessing (OLAP) approach for providing on-line exploratory
capabilities to users in performing change detection across
communities of interest over different time horizons. John
Hopcroft et al.[11] tracked evolving communities in the sci-
entific citation network from CiteSeer by focusing on the
emergence of new communities, which might represent new
research areas, such as ”Wireless Network”, and ”Quantum
Computing”. However, they did not describe other impor-
tant evolving processes such as community merging and split-
ting. Palla et al.[15] provided a method to quantify the
evolving paths of social groups by considering the common
edges of the communities in two consecutive snapshots. The
algorithm first built a joint graph consisting of all the edges
and nodes of the two subsequent graphs, and then used
CPM [16] to find the communities in this graph. Any two
communities in the corresponding subsequent graphs that
mostly matched with one of the discovered communities in
the joint graph were regarded to be in the same evolving
path. Nevertheless, this approach has two major deficien-
cies. One is that it may cost much to build the joint graph
and find the communities when the networks are large. Fur-
thermore, the matching scheme is too strict that given any
community c, c often has no descender at the subsequent
time step when it actually does have one. The other is that
this approach can not distinguish between the split com-
munities and the newly born ones. It assumes that each
community must have one major descender. When a com-
munity splits into two, the mostly matched one will be the
descender, and the other one is regarded as a ”new” born
community. However, this regarded ”new” community prob-
ably has a close relationship with its successor, and could be
very different from the real new born communities. Jimeng
Sun’s GraphScope[19] was a parameter-free mining method
over time-evolving graph streams. Essentially, GraphScope
depended on the changing of the graph partition(separated
communities) to reflect the macroscopic changes of the whole
network. By contrast, our proposed community evolution
method focuses on the microscopic evolving path of each
specific community instead.

3. CLIQUE-BASED OVERLAPPING COM-
MUNITY DETECTION ALGORITHM



Instead of dividing a network into its most loosely con-
nected parts, COCD identifies the communities based on
the most densely connected parts, namely, the cliques. We
treat each group of highly overlapping maximal cliques as
the clustering cores. Surrounding each core, we build up
the communities in an gradually expanding way according
to certain metrics until each vertex in the network belongs
to at least one community.

3.1 Notations and Definitions
In this paper, we consider simple graphs only, i.e., the

graphs without self-loops or multi-edges. Given graph G,
V (G) and E(G) denote the sets of its vertices and edges
respectively.

Definition 1. S ⊆ V (G), ∀u, v ∈ S, u 6= v, such that
(u, v) ∈ E, then S is a clique in G. If any other S′ is a
clique and S′ ⊇ S iff S′ = S, S is a maximal clique of G.

Definition 2. For a given vertex v, N(v) = {u|(v, u) ∈
E(G)}, we call N(v) is the neighbor set of v. Given set
S ⊆ V (G), N |S =

⋃
N(vi) − S, vi ∈ S, N |S is the set of all

neighbors of S. The subgraph induced on S is represented
as GS . Given subgraph Gi and Gj , Ebet(Gi, Gj) denotes the
set of edges between them.

Definition 3. Let Com(G) be the set of all components in
G. The giant component is denoted by CG and M(CG) is
the set of all the maximal cliques in CG. We use VM ⊆ V (G)
to represent the set of all vertices covered by M(CG).

Definition 4. Given vertex vi ∈ VM , Ci is the set of all
maximal cliques containing vi, and C = {Ci|Ci ⊆ M(CG)}.
∀Ci, Cj ∈ C, |Ci| ≥ |Cj |, Gi and Gj are the subgraphs
induced on Ci and Cj respectively. We use a Closeness
Function isClose(Gi, Gj) which will be discussed and im-
plemented in the next section to assess the link patterns
between Gi and Gj . If isClose(Gi, Gj) returns true, we say
Cj is contained in Ci, denoted by Cj < Ci. If Ci is not
contained by any other element in C, Ci is called the core
of G and vi is the center of Ci. The set of cores is denoted
by Core.

Definition 5. Let P0,P1,...,Pn−1 be the subgraph of G such
that V (P0)∪,...,V (Pn−1) = V (G). For any pair of Pi and Pj ,
if |E(Pi)| > |Ebet(Pi, Pj)| and |E(Pj)| > |Ebet(Pi, Pj)|, Pi is
defined as the community or cluster of G.

Definition 6. Given a set of communities C, the overlap
coefficient [9] is defined as

overlap =

∑
Pi∈C |Pi|
|V (G)|

Definition 7. Given a set of communities C, the vertex
average degree [9] is defined as

vad =
2

∑
Pi∈C |E(Pi)|∑

Pi∈C |Pi|

3.2 Algorithm
COCD first enumerates all maximal cliques in the giant

component CG. Because a maximal clique is a complete sub-
graph, it is thus the densest community which can represent
the closest relationship involving a single entity in the given
network.

3.2.1 Core Formation
For any vi ∈ V (G), Ci is the set of all maximal cliques

containing vi. Every maximal clique in Ci corresponds to
some kind of relationship involving vi, in other words, Ci

reflects the fact that individuals belong to different kinds
of relationships simultaneously. Since that Ci covers all the
densest communities in which vi has participated, set C re-
flects the nature of the overlapping communities in networks.
For any vi, vj ∈ VM , if isClose(Gi, Gj) returns true (Gi and
Gj are the subgraphs induced on Ci and Cj respectively),
which means all or most of vj ’s relationships are covered by
those of vi, we say vj depends on vi and Cj < Ci. Oth-
erwise, if ∀Ci ∈ C, i 6= j, Cj ≮ Ci, then Cj becomes the
core. Therefore, the larger that the size of Ci can be, the
more likely that a core it would become. We rearrange all
the elements of set C according to the descending order of
their sizes and delete those elements whose sizes are smaller
than 2, which means if Ci is a core, vi must participate in
at least two different relationships.

Algorithm 1 isClose(Gi, Gj)

1: {Gi and Gj are the subgraphs induced on Ci and Cj

respectively}
2: GL ⇐ Gi or Gj with the larger set of vertices
3: GS ⇐ Gi or Gj with the smaller set of vertices
4: vL ⇐ center of GL, vS ⇐ center of GS

5: if V (GS) ⊆ V (GL) then
6: return true
7: else
8: ILS ⇐ V (GL) ∩ V (GS)

9: α ⇐ |V (GL)|
|V (GS)|

10: infLS = α|Ebet(G(V (GL)−{vS}), G(V (GS)−ILS))|
11: infSL = |Ebet(G(V (GS)−{vL}), G(V (GL)−ILS))|
12: if (binfLSc ≥ |E(G(V (GS)−ILS))|) and

(binfSLc ≥ |E(G(V (GL)−ILS))|) then
13: return true
14: else
15: return false
16: end if
17: end if

Given Ci and Cj , Gi and Gj are the induced subgraphs
respectively. Iij denotes the common vertices shared by
V (Gi) and V (Gj). The basic idea of the closeness function
isClose(Gi, Gj) depends on the link pattern among Gi and
Gj to quantify the influence that they put on each other.
Being as the centers of Gi and Gj , vi and vj actually have
connections with all the other vertices, so we remove vj from
V (Gi), and vi from V (Gj). Then, the influence that Gi puts
on Gj is formulated as

infij = α|Ebet(G(V (Gi)−{vj}), G(V (Gj)−Iij))|
where

α =

{
|V (Gi)|
|V (Gj)| |V (Gi)| > |V (Gj)|
1 otherwise

α is a weighted parameter which also considers the influence
of the graph size. As a matter of fact, we believe that if
|V (Gi)| À |V (Gj)|, the vertices of Gi usually could have
many connections with those of Gj , which will put more
”gravitation” on Gj . If both binfijc and binfjic are greater



Figure 1: Core Formation

than or equal to the number of the inner edges of the sub-
graphs induced on V (Gj)−Iij and V (Gi)−Iij , then Ci and
Cj would be merged together. If |Ci| > |Cj |, Cj is thus re-
garded to be contained by Ci. Otherwise, they are indepen-
dent of each other. The implementation of isClose(Gi, Gj)
is formulated in Algorithm 1.

Let Ci0 be the element of C whose size is the largest, Ci1

be the element of C whose size ranks second. . . Cin be the
element of C whose size ranks n and etc. Core is the set of
all cores. Ci0 is first picked up and those elements contained
by Ci0 are removed from C. In the next step, each maximal
clique that includes the centers of the left elements in C will
be deleted from Ci0 in order to erase duplications. If Ci0

is not empty, it is put in Core. Again, we will pick up the
next element with the largest size from the rest elements of
C. The process shown in Algorithm 2 continues iteratively
until C becomes empty.

To make things more concrete, an illustrated example is
given as follows on the network shown in Figure 1. C0 =
{{v0, v1, v4, v5}, {v0, v1, v3, v4}, {v0, v2, v3, v4}, {v0, v4, v5, v6},
{v0, v5, v7}} with center v0. C1 = {{v0, v1, v4, v5}, {v0, v1,
v3, v4}} with center v1. Apparently C1 < C0, C1 is not a
core. Similarly,C2, C3, C4, C5 are also contained by C0, and
C8, C9, C10, C11 are contained by C7. For C0 and C7, they
share a common maximal clique {v0, v5, v7}. The common
vertices between V (G0) and V (G7) are v0, v5, and v7 respec-
tively. v7 is then removed from V (G0) and v0 is removed
from V (G7). As a result, binf07c = 7

5
× 3 = 4. binf70c = 6.

As a result, because binf07c = 4 < |E(G(V (G7)−I07))| = 5,
and binf70c = |E(G(V (G0)−I07))| = 6, C0 and C7 are inde-
pendent of each other.

3.2.2 Clustering
Once all the cores have been detected, we carry out a clus-

tering process to associate the left vertices to their closest
cores. For each subgraph Gi induced on Ci ∈ Core, we
gradually expand Gi by adding the vertices in set N |V (Gi).
Since that any vertex vi might have connections with more
than one core, vi can thus be assigned to multiple cores si-
multaneously. The clustering continues until all the vertices
of VM are covered.

Let P be the set of the expanded clusters. Given Pi, Pj ∈
P , we use the same process as the Core Formation to com-
pare the closeness between Pi and Pj . If the Closeness Func-
tion isClose(GPi , GPj ) returns true, Pi and Pj is merged
together. Otherwise, for each shared vertex vs ∈ Pi ∩Pj , vs

will be assigned to the one that it can have more connections
with, which means it may be more influential. If vs has the
same number of connections with Pi and Pj , vs is thus kept
in both of them, so the final clusters may overlap with each
other. The whole procedure is described in Algorithm 3.

Algorithm 2 CoreFormation(C)

1: Core ⇐ ∅
2: sort C by the descending order of |Ci|, Ci ∈ C
3: {center stores the centers of the filtered out kernels}
4: center ⇐ ∅
5: for Ci ∈ C do
6: contained ⇐ Cj , j 6= i, Cj < Ci

7: independent ⇐ k, k 6= i, Ck ≮ Ci

8: delete Ci from C
9: C ⇐ C − contained

10: for s ∈ Ci do
11: if s ∩ (independent ∪ center) 6= ∅ then
12: delete s from Ci

13: end if
14: end for
15: if Ci 6= ∅ then
16: put Ci to Core
17: end if
18: put vi to center
19: end for
20: return Core

Algorithm 3 Clustering(Core, Center)

1: {Center is the set of the center nodes of each core}
2: for Ci ∈ Core do
3: ∀vi ∈ V (GCi) is marked as covered
4: end for
5: while not all vertices in VM are covered do
6: {extend is the set of the vertices to be added}
7: for Ci ∈ Core do
8: ∀vi ∈ N |(V (GCi

)−Center) is added to extend

9: vi is added to V (GCi)
10: end for
11: ∀vi ∈ extend is marked as covered
12: end while
13: sort Core according to the size of V (GCi), Ci ∈ Core
14: for Ci ∈ Core do
15: ∀Cj < Ci, V (GCj ) is merged to V (GCi)
16: for CK ≮ Ci, V (GCk ) ∩ V (GCi) 6= ∅ do
17: common ⇐ V (GCk ) ∩ V (GCi)
18: if ∀vi ∈ common, |N(vi) ∩ V (GCi)| > |N(vi) ∩

V (GCk )| then
19: vi is removed from V (GCk )
20: else
21: if |N(vi) ∩ V (GCi)| < |N(vi) ∩ V (GCk )| then
22: vi is removed from V (GCi)
23: end if
24: end if
25: end for
26: end for



3.2.3 Complexity and Efficiency
We use an efficient algorithm Peamc[7] which is optimized

particularly on large sparse graphs where |V (G)| ≈ |E(G)|,
to find the maximal cliques. It costs O(∆×MC × Tri2) in
the worst case on a single processor, where ∆ is the maximal
degree of G, MC is the size of the maximum clique and Tri
is the number of all triangles in G. For the core formation,
we need to traverse all the elements of C whose size is larger
than 2, which will cost O(max(|V (GCi)|) × |C|2), Ci ∈ C.
For the clustering process, it costs O(∆×|Core|×|V (G)|×I)
to associate the left vertices to the cores, where I is is the av-
erage times to repeat until all vertices are covered. On small-
world networks, I ≈ 6. It also costs O(max(|V (GCk )|) ×
|Core|2), Ck ∈ Core to adjust the common vertices. Be-
cause real networks are often sparse graphs[20][21], we have
|V (G)| ≈ |E(G)|, |C| < |V (G)|, |Core| ≈ |C|, |V (G)| <
Tri2 ¿ |V (G)|2, and ∆ × MC < max(|V (GCk )|), Ck ∈
Core. Let CM denote the maximum size of the discovered
communities. COCD will cost O(CM × Tri2) in the worst
case.

4. CORE-BASED COMMUNITY EVOLUTION
The rich interactions and the frequent activity changes

among entities make the networks gradually evolve and de-
velop over time. People’s knowledge of the micro-mechanisms
governing the underlying community dynamics is limited,
yet is essential to have a better understanding of the macro
network evolution as a whole. By taking the self-similarity[18]
and scale-free properties into account, we assume that most
sub-graphs in networks often have central entities in the
same way as the whole network often has several hub nodes.
These central entities usually put important impacts on the
overall formation and development of the given community.
For example, in scientific collaboration networks, the central
entity of a research team could be a common advisor who
originally started the research area, while in telecommunica-
tion call networks, the central person in a group of frequently
contacted people may be the chief officer in a department.
Consequently, the stability of the cores often determines the
persistence of the communities, in other words, although the
constitution of a community may change over time, its core
nodes may still remain the same. Therefore, in this section,
we provide an algorithm based on COCD to investigate the
time dependence of the overlapping communities.

4.1 Notations and Definitions
Given a community or cluster Pi ∈ C, the vertices vi ∈ Pi

is sorted by the descending order of certain ”cental” metrics
which evaluate its ”importance” or ”influence”, such as the
degree, betweenness and other specific weights represented
as w(vi). We want to find the vertices whose weights are
the most distinguishable from the others’, so we have the
community core definition as follows.

Definition 1. For the vertices v0, v1,..., v|Pi|−1 with w(v0)
≥ w(v1), ..., ≥ w(v|Pi|−1), if ∃vk ∈ Pi such that it is the first

time when w(vk)−w(vk+1) > (
∑|Pi|−2

i=k+1(w(vi)−w(vi+1)))/(|Pi|
−k− 1), v0, v1, ..., vk are called the cores of Pi denoted by
Core(Pi).

Definition 2. Given a community at time t, Ci
t , if there

exits no other community Ck
s , s < t such that Core(Ck

s ) ∩

Core(Ci
t) 6= ∅, Ci

t is called the newborn community. Con-
trarily, if there exits no other community Cj

r , r > t such
that Core(Cj

r) ∩ Core(Ci
t) 6= ∅, Ci

t is called the dieout com-
munity. In addition, for Ci

t , if there exits no community
at time t + 1, Ck

t+1, such that Core(Ck
t+1) ∩ Core(Ci

t) 6= ∅,
yet there does exit a community Cj

r , r > t + 1, such that
Core(Cj

r) ∩ Core(Ci
t) 6= ∅, we say Ci

t is reborn at time r.

Definition 3. Given the set of communities at time t, Ct,
∀Ci

t ∈ Ct if there exist more than one community Cj
t+1, Ck

t+1 ∈
Ct+1 at time t + 1 such that Core(Ci

t)∩Core(Cj
t+1) 6= ∅ and

Core(Ci
t)∩Core(Ck

t+1) 6= ∅, we say community Ci
t splits into

community Cj
t+1 and Ck

t+1. Ci
t is the successor of Cj

t+1 and

Ck
t+1, while Cj

t+1 and Ck
t+1 are the descenders of Ci

t . For

Cj
t+1, Ck

t+1, the one who has more cores overlapping with Ci
t

is called the main descender of Ci
t .

Definition 4. Given more than one community at time t,
Ci

t , Cj
t , if there exists a community at time t + 1, Ck

t+1 such

that Core(Ci
t)∩Core(Ck

t+1) 6= ∅ and Core(Cj
t )∩Core(Ck

t+1) 6=
∅, we say Ck

t+1 is merged from Ci
t and Cj

t . Ck
t+1 is called the

descender of Ci
t and Cj

t , while Ci
t and Cj

t are the successors
of Ck

t+1.

Definition 5. Given a community at time t, Ci
t , and the

only one descender at time t + 1, Cj
t+1, if |Cj

t+1| > |Ci
t |, we

say Ci
t grows to Cj

t+1;Otherwise, we say Ci
t shrinks to Cj

t+1.

Definition 6. Given a graph stream Gt, the community
evolution problem is formulated to build family graphs
from the starting communities C0

t0 , C1
t0 , ..., in Gt0 , and in-

vestigate the statistics of their underlying activities such
as birth/death, growth/shrinking, and splitting/merging over
time on a large scale.

4.2 Tracking Overlapping Communities
To study the temporal evolution process of the communi-

ties in detail, we will track and build a family graph for each
community by using the core-based successor/descender match-
ing between consecutive time steps. Thus, we are going to
first describe the algorithm for the core’s discovery. Given
community Ci

t , Core(Ci
t) are the hub vertices whose weights

are far more than others’. According to Definition 1, let
∆(w) = w(vi)− w(vi+1). We need to find the cut-off point
that can result in the ∆(w) that is larger than the average
level. Given vertex vi ∈ Ci

t , Avgforward is the average value
of ∆(w) from vi+1 to v|Ci

t|−2, and Avgbackward is the one

from v0 to vi−1. Algorithm 4 describes the whole proce-
dure.

For community Ci
t , based on the detected Core(Ci

t), we
can build a family tree rooted with Ci

t as follows: the direct
children of Ci

t are its splitting descenders Cj
t+1, Ck

t+1, ... If Ci
t

does not have any descender at time step t + 1, we further
search for its possible reborn moment. If Ci

t is reborn at time
tr, then the matching community Cm

tr
is regarded as Ci

t ’s de-
scender, and we continue to build the family tree recursively
until the end time step. Together with other communities
that may merge with each node in the family tree, we obtain
an evolving graph of Ci

t in the end.

5. EXPERIMENTAL RESULTS



Algorithm 4 Core(Ci
t)

1: {v0, v1, ..., ∈ Ci
t , w(v0) ≥ w(v1) ≥, ..., w(v|Ci

t|−1)}
2: Core ⇐ ∅
3: for ∀vj ∈ Ci

t do

4: Avgforward =
(
∑|Ci

t|−2
k=j+1(w(vk)−w(vk+1)))

(|Ci
t|−j−1)

5: Avgbackward =
(
∑j−1

k=0(w(vk)−w(vk+1)))

j

6: if (w(vj) − w(vj+1) > Avgforward) and (w(vj) −
w(vj+1) > Avgbackward) then

7: add v0, v1, ..., vj to Core
8: break
9: end if

10: end for
11: if Core = ∅ then
12: return Ci

t

13: end if

Table 1: Datasets Summary

Graph Vertices |V | Edges |E|
KARATE CLUB[23] 34 78
DOLPHIN SOCIAL NETWORK[23] 62 159
NETSCIENCE COLLABORATION[23] 379 914
COLLEGE FOOTBALL NETWORK[23] 115 616
BLOG NETWORK[25] 3,982 6,803
CELLPHONE NETWORK 385,407 488,808
E-PRINT COLLABORATION[31] 39,577 175,693
ENRON EMAIL NETWORK[29] 1,506 3,288
DEVICE NETWORK[26] 51 169
NORTH AMERICAN POWER GRID[23] 4,941 6,594
WORD ASSOCIATION NETWORK[28] 10,225 80,330
ANT CLASS NETWORK[30] 1,319 4,784
TOMCAT CLASS NETWORK[30] 1,352 6,020
INTERNET[32] 786 18,922
PROTEIN INTERACTION NETWORK[27] 1,846 4,406
E-PRINT CITATION NETWORK[31] 34,546 421,534

In this section, we will present the experimental results
and analysis on both overlapping community detection and
evolution in several real, large networks from various do-
mains. Table 1 describes these graph datasets.

Specifically, DEVICE NETWORK consists of the students in
an experimental network in MIT whose Bluetooth devices
such as cellphone, laptop computers, and PDAs periodically
scan for each other from Jul, 2004 to April, 2005 on a weekly
basis. Two people with connection time more than 1 hour
are regarded to be acquainted with each other. We also ana-
lyze the class structures including extend, compose, reference
and implement of the famous Apache Ant 1.x and Tomcat
5.5.x [30] to build the software networks.

COCD is evaluated and compared with the existing algo-
rithms: CONGA, Pinney and Westhead ’s algorithm(P&W ),
and CFinder. We also analyze the occurring frequency of
overlapping between communities, and demonstrate the dif-
ference between overlapping and non-overlapping communi-
ties. Finally, we will show the different statistic characteris-
tics of the temporal evolution of the community structures
in the networks from both social and physical systems.

5.1 Evaluation of Overlapping Communities
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Figure 2: Communities of CELLPHONE NETWORK

We evaluate COCD, CONGA, P&W as well as CFinder [24]
in the networks of Table 1. We use Peamc[7] to enumer-
ate the maximal cliques on large sparse graphs (|V (G)| ≈
|E(G)|). On the dense E-PRINT CITATION NETWORK, we use
an improved BK algorithm[4] to find the maximal cliques.
All experiments are done on a single PC (3.0GHz proces-
sor with 2Gbytes of main memory on Linux AS3 OS). The
execution time of COCD includes both of the clique find-
ing time and the community detection time. To mea-
sure how well each algorithm can perform from the net-
works whose community structures are already known, we
introduce the following two values: Recall : the fraction
of vertex pairs belonging to the same community that are
also in the same cluster; Precision : the fraction of ver-
tex pairs in the same cluster that also belong to the same
community. Table 2 presents the experimental results on
the KARATE CLUB, DOLPHIN SOCIAL NETWORK, and COLLEGE

FOOTBALL NETWORK. We see that on KARATE CLUB, COCD
has both higher Recall and Precision. Just like GN algo-
rithm, it finds almost perfect with only one misclassified ver-
tex. For CONGA, although it has a more higher V ad, sug-
gesting that the communities it discovered are more denser,
CONGA does not perform very accurately; On DOLPHIN

SOCIAL NETWORK, the observer Lusseau has used GN to find
2 principle communities and then further refined these 2
communities to 4 sub-communities. COCD can find the 4
communities directly with high recall and precision values;
For COLLEGE FOOTBALL NETWORK, COCD is the only one
that can perfectly find the 12 communities with the lower
Overlap and higher V ad values. In terms of CFinder(k =
3), although it covers all the vertices with a high Overlap =
2.13 and Recall = 1.00, it only correctly classifies a small
portion(Precision = 0.11) of the vertices. With respect to
CFinder(k = 5), it performs better by obtaining 15 com-
munities, however, it does not cover all the vertices of the
network for Overlap = 0.97.

In addition, COCD is tested on other networks given in
Table 3. We use ~ for name abbreviation. CONGA costs
30,182s to run on the BLOG NETWORK. Because both CONGA
and P&W are the extensions of the classic GN algorithm,
they actually cost too much time( more than 5h on average)
to run on the networks in Table 3. For CFinder, it gen-
erally can not cover all the vertices of the network to give
very satisfactory results. We further evaluate the homogene-
ity of COCD ’s discovered communities on the CELLPHONE



Table 2: Results on Networks with Known Community Structures

Graph Algorithms Recall Precision Overlap Vad Time(s) Communities|C|
COCD 1.00 0.95 1.05 4.00 0.001 2

KARATE CLUB CONGA 0.80 0.55 1.03 4.45 0.002 2
P&W 0.44 0.73 1.73 3.02 0.063 4
CFinder(k = 3) 0.62 0.53 1.00 3.94 0.063 3

COCD 0.99 0.88 1.06 4.06 0.001 4
CONGA 0.95 0.90 1.03 4.91 0.011 2

DOLPHIN SOCIAL NETWORK P&W 0.49 0.65 1.50 3.52 0.010 15
CFinder(k = 3) 0.46 0.58 0.85 4.65 0.01 4
CFinder(k = 5) 0.05 1.00 0.18 4.36 0.003 2

COCD 0.91 0.82 1.04 7.23 0.014 12
CONGA 0.93 0.32 1.75 5.87 7.80 15

COLLEGE FOOTBALL NETWORK P&W 0.72 0.52 3.11 3.66 0.02 63
CFinder(k = 3) 1.00 0.11 2.13 7.83 0.8 4
CFinder(k = 5) 0.68 0.95 0.97 6.28 0.8 15

Table 3: Results on Networks with Unknown Com-
munity Structures

Graph Overlap Vad Time(s) |C|
BLOG~ 1.11 2.94 0.56 196
CELLPHONE~ 1.67 2.05 678 6027
COLLABORATION~ 1.20 5.07 2127 3629
POWER GRID~ 1.18 2.23 0.25 230
WORD~ 1.43 4.01 65 790
ANT 1.7~ 1.07 6.72 10 22
TOMCAT 5.5.9~ 1.28 7.33 9 43
INTERNET 1.45 3.92 850 69
PROTEIN~ 1.11 2.21 0.09 55
CITATION~ 1.44 15.43 5819 1048

NETWORK by using the additional information: zip-code and
users’ age. According to Figure 2, the blue star symbols cor-
respond to the average size of the largest subset of members
with the same zip-code, < real >, in the discovered cell-
phone call communities divided by the same quantity found
in random sets, < rand >. Similarly, the red circle symbols
show the average size of the largest subset of members with
the same age, < real >, in the discovered cellphone call com-
munities divided by the same quantity found in random sets,
< rand >. We can see that the < real > / < rand > ratio
is significantly larger than 1 for both the zip-code and age,
indicating that the communities discovered by COCD tend
to contain individuals living in the same area and having a
comparable age, a homogeneity that supports the validity
and effectiveness of the discovered communities.

Figure 3 shows parts of the communities in the vicinity
of the word BRIGHT. The common vertices are drawn with
Black color. BRIGHT is the common vertex of all the three
communities, YELLOW is shared by community A and C,
and BRILLIANT is hold by community B and C. It is
easy to see that each community corresponds to one specific
meaning or concept of the word BRIGHT. However, if we
use the non-overlapping algorithm, such as GN , BRIGHT
can only be associated with one of these three communities,
which could result in some loss of information.

Moreover, in Table 3, we can observe an interesting phe-

Figure 3: ”Bright” Community

nomena that the Overlap values of CELLPHONE NETWORK, WORD
ASSOCIATION NETWORK, INTERNET and E-PRINT CITATION NET-

WORK are much higher than those of the other networks. One
reason we believe is that it results from the different types
of the links in the network. For CELLPHONE NETWORK, peo-
ple can contact with each other due to various reasons, so
the link can represent the family relationship, student rela-
tionship, colleague relationship and so on. The link in this
network can have multiple meanings simultaneously, so an
individual tends to belong to multiple communities. Simi-
larly, in WORD ASSOCIATION NETWORK shown in Figure 3, it is
common for a word to have many meanings, each of which
may corresponds to one community, so the links belong-
ing to these different communities can have various mean-
ings. The INTERNET takes the same situation with CELLPHONE

NETWORK simply for that each computer may logically partici-
pate in many domains. For the E-PRINT CITATION NETWORK,
one article may be cited by other articles coming from dif-
ferent fields because of the interdisciplinary collaborations.
Each community may represent one possible research filed,
so each paper is probably involved in multiple communities.
In terms of the other networks of Table 3, the links’ types
are relatively simple. Vertices in these networks often inter-
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act with each other for only one simple relationship, so their
Overlap values are much lower.

5.2 Community Evolution
The time evolving graphs we consider are CELLPHONE NET-

WORK for 15 weeks, E-PRINT COLLABORATION for 168 weeks,
DEVICE NETWORK for 39 weeks, which are social networks; IN-
TERNET[32] for 29 snapshots, ANT CLASS NETWORK from ver-
sion 1.0 to 1.7, and TOMCAT CLASS NETWORK from version
5.5.0 to 5.5.25, which are non-social networks. In addi-
tion, CELLPHONE NETWORK and E-PRINT COLLABORATION have
rather different local structures. A phone call record of the
CELLPHONE NETWORK captures the communication patterns
between two people, whereas the publication of the E-PRINT

COLLABORATION associates all authors of a given paper a fully
connected clique as a one-mode projection between authors
and papers. These fundamental differences of the above net-
works suggest that any common features of the community
evolution in our experiments could reflect potentially general
laws and properties, rather than depending on the details of
the network representation.

Figure 4 describes the community size distribution at dif-
ferent time steps. They all resemble to a power-law with
a high exponent. We have further studied the relation-
ships among the lifetime, the stable rate, and the com-
munity size. Given community Ci

t , the evolving trace con-
sisting of its subsequent main descenders of the family
tree is regarded as Ci

t ’s backbone trace denoted as τ = {
Ci

t , Ci
t+1, ..., Ci

t+n }. We use the auto-correlation coeffi-
cient to quantify the relative overlap between Ci

t and Ci
t+1 as

A(Ci
t , Ci

t+1) =
|Ci

t∩Ci
t+1|

|Ci
t∪Ci

t+1|
Consequently, given community Ci

t

and its evolving backbone τ , we adopt the average value of

A(Ci
t) as < A(Ci

t) >= (
∑|τ |−1

t=0 A(Ci
t , Ci

t+1))/|τ | to represent
its evolving stable rate.

Figure 5 shows the experimental results on the relation-
ships between the community age, the stable rate, and the
corresponding community size in various networks. From
Figure 5(a) to Figure 5(f), the Average Age of communi-
ties with a given size is calculated as the average value of its
lifetime over the set of available communities and the time
steps. We see that larger communities tend to live longer
than the smaller communities on average. For Figure 5(c),
the community with size 30 marked by the red line appears
in the summer vacation in Aug, 2004. At this moment,
more students may get involved in the experiment network
to form this large community for a relatively short lifetime.
For the non-social networks INTERNET, ANT 1.X CLASS NET-

WORK, and TOMCAT 5.5.X CLASS NETWORK, they often have
an extremely large community whose size is far more larger
than others’. For example, in TOMCAT 5.5.X CLASS NETWORK

this community corresponds to the classes within the pack-
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Figure 5: Relationships between Lifetime, Stable
Rate, and Community Size



age catalina which is the core component of TOMCAT.
As a result, Figure 5(d), Figure 5(e) and Figure 5(f) mainly
focus on such large communities, and they also indicate that
the larger the community can be, the longer it would live.

Given community Ci
t and its evolving backbone τ , Figure

5(g) – 5(l) demonstrate the relationship between the aver-
age lifetime of τ and its stable rate. Figure 5(g) and 5(h)
show that communities living longer have lower stable rate,
whereas Figure 5(i) – 5(l) give the opposite situation that
communities living longer have higher stable rate. This is
because for the CELLPHONE NETWORK and the E-PRINT COL-

LABORATION network, they are the ”open” systems that as
vertices are joining in or leaving off the networks, communi-
ties are more easy to survive and develop by changing their
constitutions over time. However, for the DEVICE NETWORK,
INTERNET, ANT 1.X CLASS NETWORK and TOMCAT 5.5.X CLASS

NETWORK, they are ”close” systems whose constitutions are
relatively stable. As a result, communities with high stable
rate are more easy to survive and live longer than others.
Moreover, we have a similar situation in Figure 5(m) – 5(r)
which describe the relationship between the average commu-
nity size of τ and its average stable rate. Large communities
in the ”open” systems CELLPHONE NETWORK and the E-PRINT

COLLABORATION tend to change its members to live longer,
yet they often try to keep stable in the more ”close” sys-
tems INTERNET, ANT 1.X CLASS NETWORK and TOMCAT 5.5.X

CLASS NETWORK to develop and evolve.

6. CONCLUSIONS
In this paper, we have proposed a new method COCD for

efficient overlapping community identification in large-scale
networks. We have demonstrated the effectiveness and effi-
ciency of COCD over a number of real networks coming from
disparate domains whose structures are otherwise difficult
to understand. Experimental results show that COCD can
extract meaningful communities that are agreed with both
of the objective facts and our intuitions. We also show that
the overlapping between communities depends on the mean-
ing and types that the edges can actually take in the given
networks. Moreover, based on COCD, we further present a
Core-based method to investigate the temporal dependence
of overlapping communities. We have found that if the net-
work is an open system, large communities can live longer
by consistently changing their members; However, if the net-
work is a relatively close system, they tend to survive and
develop by keeping stable. For the future work, we will con-
tinue our research by focusing on modeling the evolution and
prediction of the community structures as well as extensions
to find communities in bipartite networks.
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