
Improved Recommendation based on Collaborative
Tagging Behaviors

Shiwan Zhao1, Nan Du2, Andreas Nauerz3, Xiatian Zhang1, Quan Yuan1, Rongyao Fu1

1IBM China Research Laboratory, Beijing, 100094, China
{zhaosw,xiatianz,quanyuan,furongy}@cn.ibm.com

2Beijing University of Posts and Telecommunications,Beijing, 100876, China
dunan@bupt.edu.cn

3IBM Research and Development,Schoenacher STR. 220, Boeblingen,71032, Germany
andreas.nauerz@de.ibm.com

ABSTRACT
Taking into consideration the natural tendency that people
usually follow direct or indirect cues of activities of others,
most collaborative filtering-based recommender systems in
web personalization often predict the utilization of pages for
a particular user according to the pages previously rated by
other similar users. Consequently, effective searching for the
most related neighbors is critical for the success of recom-
mendation.

Recent years have seen the flourishing development of the
World Wide Web as the main social media that enables in-
dividuals to easily share opinions, experiences and expertise
across the world. Collaborative tagging systems with social
bookmarking as their key component of modern Web 2.0
applications allow users to freely bookmark and assign se-
mantic descriptions to various shared resources on the web.
While the favorite list of web pages indicates the interests
or taste of each user, the assigned tags can further provide
useful hints about how a user may think of the pages.

Therefore, in this paper, we propose a new collaborative fil-
tering approach TBCF (Tag-based Collaborative Filtering)
based on the semantic distance among tags assigned by dif-
ferent users to improve the effectiveness of neighbor search-
ing. That is, two users could be considered similar not only if
they rated the web pages similarly, but also if they have sim-
ilar cognitions over these pages. We tested TBCF with two
different real-life datasets. The experimental results show
that our approach has significant improvement against the
traditional cosine-based recommendation method.

Author Keywords
Web2.0, Tag, Recommendation, Collaborative Filtering

ACM Classification Keywords
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces-Collaborative computing

INTRODUCTION
Collaborative filtering, as one of the most successful tech-
nologies for recommender systems, has been developed and
improved over the past decades. In the common formula-

tion, the recommendation problem is reduced to the prob-
lem of estimating the utilization for the items that have not
been seen by a user[7, 12, 15]. Generally speaking, collab-
orative filtering approaches predict the rating of items for a
particular user (active user) based on the ratings from other
users with similar interests. For example, in a movie rec-
ommender system, one user’s rating to a movie is a numeric
score ranging from zero to five, which indicates how much
the user likes or dislikes the movie. People holding simi-
lar rating patterns can form a neighborhood, and the ratings
from these like-minded neighbors be used to achieve predic-
tions for the active user.

Although the previous rating scheme can represent the ex-
tent to which a particular user may prefer a given item, it
can not reveal the user’s own opinions and understanding
over such an item. In other words, this rating scheme only
demonstrates the strength of preference along a single di-
mension by scalar quantities. Yet, various users may give
the same rating to an item from different points of view. For
instance, both Bob and Tom may rate the movie Transform-
ers by five stars, which indicates they all like this movie very
much. Nevertheless, as a 3D fan, Bob appreciates this movie
for its high quality 3D animations, while John may think that
it is a wonderful action movie. Therefore, if users show ap-
proximate strength of interests from similar points of view,
they can be regarded as neighbors with much more closer
relationship.

In most practical applications, it is often annoying for users
to provide ratings explicitly, so many researchers focus on
the retrieval of user profiles from the interactions with the
application system alternatively. For example, web server
logs could indicate the usage patterns of a user on certain
web sites. Such implicit acquisition of user preferences is
often referred as log-based collaborative filtering[18] and
usually gives binary-valued ratings. If some web page is
visited by a user, the rating is one implicitly which means
relevance; otherwise it is zero which indicates irrelevance.
The development of modern Web 2.0 applications, such as
flickr, del.icio.us and YouTube, indicates a fundamental shift
in the ease of publishing contents. People now can eas-
ily share their photos, bookmarked web pages, or movies
with each other at the push of a single button. As a result,

1

tagging has become the key part of the social bookmark-
ing systems and a powerful tool for semantically describing
the shared resources. Additionally, tagging can be regarded
as another important way of implicit rating with semantics.
In a social bookmarking system, users usually save their fa-
vorite web resources, such as web pages, photos, and im-
ages, which could indicate the positive attitude (like) to these
bookmarked resources. Beyond that, people can also freely
add tags based on their personal tendency, their preferences
and beliefs.

On the other hand, one common problem of collaborative
recommendation systems is that the number of ratings al-
ready obtained by each user is very small, which is often
referred as the sparsity problem[1]. Since the success of any
collaborative system depends on the availability of a criti-
cal mass of users, effective prediction from a small num-
ber of examples is important. Compared with the traditional
binary-valued ratings, tags can reflect both the user prefer-
ences and their opinions. That is, two users could be consid-
ered similar not only if they rated the web pages similarly,
but also if they have similar cognitions over these pages.
This kind of additional semantic information can be used
to address the sparsity problem further. Therefore, by taking
the semantic distance among tags assigned by different users
into consideration, we propose a new collaborative filtering
approach TBCF (Tag-based Collaborative Filtering) to im-
prove the effectiveness of neighbor searching.

The remainder of the paper is organized as follows: In sec-
tions 2 we review some related work. Section 3 describes
our tag-based recommendation approaches. The experimen-
tal results and analysis are given in section 4; and we con-
clude our work in section 5.

RELATED WORK
Research within the field of rating-based collaborative rec-
ommendations can be classified into two general groups:
memory-based and model-based. In terms of the memory-
based approach, every rating example could be accessed just
in time as long as it is needed to find similar neighbors and
make predictions. It seems that all these examples are ”mem-
orized” by the recommendation system. During the pre-
diction stage, similar neighbors are ranked according to the
memorized ratings. Then, based on the ratings of the most
similar users, a recommendation for the active user is gen-
erated. Existing algorithms of memory-based algorithms in-
clude the weighted predictive methods, user clustering and
the item correlation approach[4, 5, 11].

With respect to the model-based algorithms, they usually
learn experiences or models from the collection of ratings.
Their predications are based on these models being con-
structed. Breese[4] proposes two probabilistic models which
are based on the simple Bayesian classification and Bayesian
network respectively. Billsus and Pazzani[3] provide a col-
laborative filtering approach in the machine learning frame-
work where various machine learning techniques can be used,
such as the reinforcement learning and artificial neural net-
works. Ungar and Foster[17] have presented a statistical

model by using K-means clustering and Gibbs sampling to
estimate the model parameters. Other interesting methods
include the linear regression model[13], the maximum en-
tropy[6], a Markov decision process[14], and the probabilis-
tic latent semantic approach[8]. Compared with memory-
based algorithms, the model-based methods can solve the
data sparsity problem to some extent, but they usually re-
quire a significant number of parameters and hidden vari-
ables to be tuned, which often prevents them to be used in
practice.

As mentioned before, although the rating-based approaches
depend on the ratings of items. In many real-life applica-
tions, people hesitate to give ratings explicitly. As a re-
sult, log-based approaches are more favorable in practice,
where implicit interest functions usually generate binary-
valued preferences. More formally, let U and I be the set
of all users and items respectively. The specific value of the
unknown rating r(ui, c) of item c for user ui(ui ∈ U, c ∈ I)
is often estimated from the ratings r(uj , c) given to item c
by other similar users uj ∈ U, j 6= i. In log-based collabo-
rative recommendation,r(uj , c) = 1 if uj has once browsed
or accessed item c; otherwise r(uj , c) = 0. Suppose UN

denotes the set of N users who have accessed item c and are
the most similar to ui. One of the most popular approaches
to define r(ui, c is to use the weighted sum as follows

r(ui, c) = k
∑

uj∈UN

sim(ui, uj)× r(uj , c)

The weight sim(ui, uj) is the similarity measure between
users ui and uj . The more similar users ui and uj are, the
more weight rating r(uj , c) will carry in the estimation of
r(ui, c). k is the normalizing factor such that the absolute
values of the weights sum to unity. Since that sim(ui, uj)
is a heuristic function, different recommendation systems
in separate application domains may use different similar-
ity measures of their own. Let Iuv be the set of all items ac-
cessed by both user u and v together.One commonly adopted
similarity measure is to treat user u and v as two vectors in
m-dimension space where m = |I| accordingly. The simi-
larity value between u and v is thus calculated as the cosine
of the angle between the corresponding two vectors.

sim(u, v) =
−→u · −→v

‖−→u ‖ · ‖−→v ‖ =

∑

c∈Iuv

r(u, c)× r(v, c)

√∑

c∈Iu

r(u, c)2 ×
√∑

c∈Iv

r(v, c)2

Sood and Owsley[16] directly apply information retrieval
techniques to contents part of the browsed web pages in
order to compute sim(u, v). However, it is obvious that
not all shared resources can be compared directly by their
contents.Hence, our proposed method uses tags as the fea-
ture vector of a user. Thus TBCF in general can recom-
mend uniquely identifiable resources, such as pages, images,
videos and even people.

TAG-BASED RECOMMENDATION
Our recommendation approach mainly consists of two parts.
First we will adopt two approaches to calculate the semantic

2

similarity among tags. Then based on this new similarity
metric we present our collaborative recommendation engine.

WordNet-based Tag Similarity
WordNet is a public lexical database that provides a large
repository of English lexical items. Each word in WordNet
is stored in a structure called synset which is the basic unit
of the whole dictionary. Every synset includes the word, its
meaning and the corresponding synonyms. The meaning of
a word is often referred as gloss which actually defines the
specific concept. Different meanings of a word correspond
to different synsets. Terms with the synonymous meanings
lie in the same synset.For example, the word love and pas-
sion constitute a synset with the gloss:any object of warm
affection or devotion. All the synsets are organized by some
basic semantic relations, such as ”the part of” and ”is a kind
of”. As a result, the whole dictionary can be treated as a
large graph with the node being the single synset and the
edge representing the semantic relation.

As discussed above, the tagging technique allows people
to freely annotate their shared resources from photo tag-
ging (flickr), to web page tagging (del.icio.us) to social tag-
ging(Facebook). The tags used tremendously improve or-
ganizing, browsing, navigating and searching for resources.
Tagging provides users with means to categorize content au-
tonomously, independent from any central administrative in-
stance. However, every coin always has two sides. Since
tagging systems do not enforce fixed or controlled vocab-
ularies for tag selection, the free choice of tags also result
in many problems. First, multiple tags can have the same
meanings, which is referred as synonymy. Two tags may be
morphological variation (apple vs. apples) or semantically
similar (love vs. passion). Second, single tags can have mul-
tiple meanings, which is often referred as polysemy. For in-
stance, a web page tagged with ”apple” may be a post about
fruits or can be interpreted as introducing iPod.

To address these problems, we first adopt Porter’s stemming
algorithm[9] to remove the common morphological and in-
flexional endings of tags, so the morphological variation can
be solved. Then we use Satanjeev Banerjee’s algorithm[2] to
get rid of the semantic ambiguity of a particular tag in cer-
tain contexts. The basic idea of this approach is to count the
number of words that are shared between two given glosses.
The more common words they share, the more close they
would become. For example, suppose we have two tags ”ap-
ple” and ”orange”. According to WordNet, ”apple” has two
meanings:

1. fruit with red or yellow or green skin and sweet to tart
crisp whitish flesh

2. native Eurasian tree widely cultivated in many varieties
for its firm rounded edible fruits

The tag ”orange” has five different meanings:

1. round yellow to orange fruit of any of several citrus trees

2. orange color or pigment; any of a range of colors between

Figure 1. WordNet Concept Tree

red and yellow

3. any citrus tree bearing oranges

4. any pigment producing the orange color

5. a river in South Africa that flows generally westward to
the Atlantic Ocean

Applying Leks’s algorithm to these tags, we can find that
the first meaning of ”apple” and the first meaning of ”or-
ange” shares the word ”fruit”. As a consequence, these two
glosses are selected to define ”apple” and ”orange” when
we put them together. Since that the organization of Word-
Net can be regarded as an undirected graph shown in, single
tag with multiple meanings or glosses can appear in multi-
ple vertices. However, once we have identified the specific
gloss of a tag, the corresponding position or vertex of the
tag in the graph is thus fixed. Therefore, the most straight-
forward method to calculate the semantic similarity between
two given tags is to find the shortest path connecting them
in the graph. The shorter the path would be, the more sim-
ilar they would become. In figure 1, we see that ”book”
and ”volume” are within the same synset indicating that they
have the same meaning exactly. Thus the distance is zero.
While, the distance between ”journal” and ”book” is 1, ”bed
clothing” and ”blanket” is 2, and ”album” and ”blanket” is 7.
For the tags that are not included in WordNet, we use Leven-
shtein algorithm[10] to calculate the edit-distance between
them. Levenshtein distance can be computed by finding the
cheapest way to transform one string into another. Trans-
formations are the one-step operations of insertion, deletion
and substitution. In the simplest version substitutions cost
about two units except when the source and target are iden-
tical, in which case the cost is zero. Insertions and deletions
costs half that of substitutions. Therefore, the total similarity
measure is defined as

sim(x, y) =
1

dis(x, y) + 1

if x and y are contained in WordNet. dis(x, y) is the shortest
path length between x and y. Otherwise,

sim(x, y) = 1− Lev(x, y)
maxlength(x, y)

3

Table 1. Tag-based User-Item Matrix
Item 1 Item 2 Item 3 Item 4

Alice Art, photo Home, Products Writing , Design Learning, Education
Daniel Photo, Album, Image ∅ Typewriter Tutorial, Training
Sherry ∅ Cleaning ∅ Language, Study
Maggie Photography ∅ Ovens ∅

where either x or y is not contained, and Lev(x, y) is the
value of Levenshtein distance.

Algorithm 1 GetSemanticDistance(ti,tj)
1: apply Porter Stemming Algorithm on ti and tj
2: if ti and tj ∈WordNet then
3: select the appropriate meanings of ti and tj by

Micheal’s algorithm
4: calculate the shortest path length dis(ti, tj)
5: return 1

dis(x,y)+1

6: else
7: calculate Levenshtein distance Lev(ti, tj)
8: return 1− Lev(ti,tj)

maxlength(ti,tj)

9: end if

Tag-based Recommendation Engine
The basic idea of our recommendation approach is to find
the top-n nearest neighbors by using the semantic similarity
among tags. Formally, let U be the set of all users, I be the
set of all items that can be recommended, and T be the set
of all tags rated on all the items by users in U . The new
user-item rating matrix with tags is shown in Table 1

We can observe that each element in the matrix is now the
set of rated tags rather than the binary-value 1 or 0 compared
with traditional log-based method. Since that the feature
vector of each user is no longer in the m-dimension space
m = |I| of real numbers, we cannot directly calculate the
cosine of the angle between these vectors. Alternately, we
turn to compute the user similarity based on the similarity
value of tag sets. In the first step, given two users u, v ∈ U ,
we obtain the set of common items Iuv by intersecting Iu

with Iv . For each element c ∈ Iuv the tag sets of user u and
v on item c are defined as T (u, c) and T (v, c) respectively,
where T (u, c), T (v, c) ⊆ T .

In the second step, the similarity calculation of two tag sets is
formulated as computing a maximum total matching weight
of a bipartite graph, which is derived from the classic op-
timal assignment problem that tries find the optimal as-
signment of workers to jobs that maximizes the sum of rat-
ings,given all non-negative ratings cost[i, j] of each worker
i to each job j. Similarly, G can be partitioned into two
disjoint node sets T (u, c) and T (v, c) such that every edge
connects a tag in T (u, c) with a tag in T (v, c) carrying the
similarity value sim(x, y) x ∈ T (u, c), y ∈ T (v, c) as the
weight. The Hungarian method is thus adopted to obtain the
set of matching pairs defined as M . Algorithm 2 presents
the process. We then define the similarity value of user u

Algorithm 2 GetSimilarity(Ti,Tj)
1: for each tag ti ∈ Ti do
2: for each tag tj ∈ Ti do
3: sim(ti, tj) = GetSemanticDistance(ti, tj)
4: end for
5: end for
6: M ← Hungarian Algorithm applied on bipartite graph

G(Ti,Tj)
7: sum ← 0
8: for each pair (ti, tj ∈ M) do
9: sum ← sum + sim(ti, tj)

10: end for
11: return sum

and v as follows:

sim(u, v) =
∑

ci∈Iuv

∑

(x,y)∈Mci

sim(x, y)

where x ∈ T (u, ci), y ∈ T (v, ci).

Based on this similarity measure, we are going to find the
top-n nearest neighbors Un of the particular user u. For each
element ck ∈ I = I−Iu, the predicted rating of ck is defined
as

R(u, ck) =
∑

vi∈Un

w(vi)× sim(u, vi)

where w(vi) = 1 if vi rates ck; otherwise, w(vi) = 0. In
the end, we only return the top M predicted items of to user
u. The whole procedure is described in the following algo-
rithm.

Algorithm 3 TBCF (User-Item matrix U × C, tag set T ,
active user u ∈ U)

1: for each user vi ∈ U , vi 6= u do
2: Iuvi

← Iu ∩ Ivi

3: sim(u, vi) ← 0
4: for each ci ∈ Iuvi

do
5: sim(u, vi) ← sim(u, vi)+GetSimilarity(T (u, ci),

T (vi, ci))
6: end for
7: end for
8: Un ← top-n nearest neighbors of u
9: for each ci ∈ Iu do

10: R(u, ck) =
∑

vi∈Un

w(vi)× sim(u, vi)

11: end for
12: sort Iu by the descending order of R(u, ck), ck ∈ Iu

13: return top M recommended items from Iu

4

Figure 2. Dogear system in IBM

EXPERIMENTAL EVALUATION
In this section, we will describe the datasets, evaluation cri-
teria and different protocols used in the experiments. Based
on the experimental results, we present a detailed analysis
and discuss the predictive accuracy.

Datasets Preparation
We demonstrate the working of our approach on the datasets
extracted from the web logs of Dogear shown in Figure 2
which is an enterprise collaborative bookmarking system within
IBM comparable with delicious. Dogear exploits the enter-
prise by allowing people to bookmark pages within their In-
tranet.

Moreover, it uses enterprise directories to authenticate and
record the user’s identity, which allows people to find ex-
perts on specific topics within the company. For example,
an employee looking for someone knowledgeable in Java
can look at the dogear ”java” tag to see who has been book-
marking pages around that topic. Dogear will also show tags
associated with ”java,” which may help to refine the search.
Once users have found a potential expert, they can see that
person’s bookmarks, internal blog, and contact information.
This form of expertise location helps spur collaboration and
sharing of resources within the company.

We use a triple relation < userID, pageID, tag > to record
which user puts which tag on which page. The majority of
the data in dogear comes from two sources mainly: the first
one includes all the pages and tags created within the in-
tranet, and the second one contains the data imported from
the users’ own bookmarked pages in their browser. Based

Table 2. Tag-based User-Item Matrix
Dataset 1 Dataset 2

Total Users 8000 2756
Total Pages 5315 12000
Total tags 7670 9006

Mean pages per user 7 7
Mean pages per page 10 1.6
Mean pages per page 6.8 4.8

on the above triple relation, we have extracted two datasets
with different characteristics shown in Table2.

Evaluation Criteria
The effectiveness of a collaborative filtering algorithm de-
pends on the ways in which recommendations will be pre-
sented to the user. Traditionally, there exist two basic styles
of recommendations. In terms of the first one, individual
items are presented one-at-a-time to the users along with a
rating indicating potential interest in the topic. Thus each
item has an estimated rating value, and which allows to com-
pare this value with that of the actual rating of the active user
to make an evaluation.

With respect to the second one, it presents the user with a
ranked list of items by a descending order of their estimated
ratings. Users can go through the list to find their most in-
terested items. Since in our experiments the item ratings are
literal tags but not real numbers, we decided to adopt the
second method to generate a list of web pages being recom-
mended, and evaluate their acceptance by the active user.

5

Table 3. Statistical all but one results
Dataset 1

Algorithm Average Precision Average Ranking
TBCF 0.27 2.8
cosine 0.13 1.5

Dataset 2
TBCF 0.037 1.4
cosine 0.015 1.2

Protocols and Results
We perform three classes of experiments to compare the per-
formance of TBCF with that of the classic rating-based algo-
rithm which depends on a cosine-based similarity measure.

In the first protocol, every single page that is tagged before
by the active user is withheld alternately. We then try to de-
termine a top-n list of recommendations and predict whether
this withheld page could appear or not. We cycle through
all the users and calculate the average value of the portion
that the predicted number of pages occupies against all the
tagged pages each active user statistically. This protocol is
termed as ”statistical all but one” and we formulate this pro-
tocol as follows. For each active user ui ∈ U , Iui

represents
the set of pages that ui has tagged. Let Rui

be the set of
pages that appear in the corresponding recommendation list.
The average precision is thus defined as

SABONE =

∑

vi∈Un

|Rui|
|Iui

|

|U |
The ”statistical all but one” experiments measure the algo-
rithms’ performance when given as much data as possible
from each active user. The higher SABONE would become,
the more accurate the algorithm can behave. In our exper-
iments, for each active user, we search for his top-5 most
similar neighbors, and generate a top-10 recommendation
list each time. The results of our TBCF approach and the
cosine-based method are given in table 3.

In table 3, the average ranking value reflects the average po-
sition that the withheld pages hold in the corresponding top-
10 recommendation list. We see that the number of users in
dataset 1 is greater than the number of the pages. By con-
trast, in dataset 2, we have exactly the opposite situation.
Therefore, although the number of the mean pages tagged
by each user is the same in both datasets, the users in dataset
1 have a higher probability that two more users can tag on
the same page than dataset 2. As a result, the average preci-
sion of the two algorithms in dataset 1 is greater than that in
dataset 2, and TBCF can correctly recommend more pages
than cosine in both the two situations.

In the second protocol, for a randomly selected active user,
we search for his similar neighbors in a randomly generated
subset of the user space instead of the whole user space. This
protocol is termed as ”random all but one”, which focus on
the performance of the neighborhood selection. In our ex-
periments, we have randomly generated eight subsets with

Table 4. Random all but one results
Random Average Precision Average Precision

generated subset TBCF cosine
500 0.208 0.121
1000 0.211 0.112
2000 0.182 0.118
3000 0.209 0.185
4000 0.202 0.173
5000 0.188 0.156
6000 0.209 0.180

the total user being as 500, 1000, 2000, 3000, 4000, 5000,
and 6000 from dataset 1 accordingly. Table 4 shows the ex-
perimental results.

The crucial step in collaborative filtering recommendation
systems is the selection of the neighborhood. The neighbors
of the active user is entirely determine his predictions. It is
therefore critical to select neighbors who are most similar
to the active user. In pure collaborative filtering systems,
the similarity among users is only determined by the ratings
given to co-rated items; items that have not been rated by
both users are ignored.

However, in TBCF, the similarity is not only based on the
rating patterns of the users, but also based on their cogni-
tions on the same items. We claim that this feature of TBCF
makes it possible to select a better, more representative and
accurate neighborhood. For example, consider two users u
and v with four common pages about Java technology. User
u often browses these pages searching for the GUI program-
ming techniques, but the other one often focuses on the as-
pects of jsp and B/S architecture. Pure collaborative filter-
ing would consider them similar. By contrast, TBCF would
not think so and may further find user w holding three com-
mon pages with v and having similar tags as jsp, tomcat and
struts.

Consequently, although the number of common pages be-
tween w and v is less than that between u and v, user w
could be more closer to user v than user u and therefore they
would be considered neighbors. We believe that this superior
selection of neighbors is one of the reasons that TBCF out-
performs pure cosine-based collaborative filtering approach
shown in figure 3.

In the third protocol, we randomly select 2 and 5 tagged
pages from each user as the observed pages, and attempt to
predict the remaining ones. This protocol is called k-given
where k = 2 and 5 respectively. We use recall and preci-
sion from the field of information retrieval to evaluate the
returned items. For a given number of returned items, recall
is the percentage of relevant items that were returned and
precision is the percentage of returned items that are rele-
vant. More formally, for each active user ui ∈ U , Iui

rep-
resents the set of pages that ui has tagged. Suppose we use
set K to store the observed pages, and set R to represent the
recommended top-n (in our experiment n = 10) list. The

6

Figure 3. Random All but One

Table 5. Random all but one results
Dataset 1

Algorithms Given Recall Precision ValidUser
TBCF 2 0.28 0.16 6247
cosine 2 0.23 0.13 6247
TBCF 5 0.27 0.15 4832
cosine 5 0.23 0.12 4832

Dataset 2
TBCF 2 0.042 0.023 1284
cosine 2 0.037 0.019 1284
TBCF 5 0.041 0.039 700
cosine 5 0.034 0.033 700

recall is defined as

recall =
|(Iui

−K) ∩R|
|Iui | − |K|

and precision is given as

precision =
|(Iui −K) ∩R|

|R|
Given k = 2 and 5, we go through the whole user space and
calculate the average value of recall and precision respec-
tively, shown in table 5. The various Given experiments look
at users with less data available, and examine the perfor-
mance of the algorithms when there is relatively little known
about an active user. In running the tests, if a user did not
have adequate tagged pages for the ”Given” value, he will

Figure 4. Network Modularity Q and f

be eliminated from the evaluation. Thus the ValidUser eval-
uated under each protocol is different from each other. Table
5 demonstrates that even in the extremely sparse situation,
TBCF also outperforms the cosine method due to its better
neighborhood searching mechanism.

CONCLUSION AND FUTURE WORK
Incorporating the semantic information of the tags associ-
ated with the shared resources into collaborative filtering can

7

significantly improve predictions of a recommender system.
In this paper, we have provided an effective way to achieve
this goal. We have shown that how tag-based collaborative
filtering outperforms the pure cosine-based collaborative fil-
tering method.

TBCF elegantly uses the semantic similarity among the tags
to significantly improve the neighborhood searching process
which is a critical step for the collaborative recommendation
system and directly determines the accuracy of the final pre-
dictions. We have tested TBCF with two different datasets
from the real-life applications. It can also overcome the spar-
sity disadvantage to some extent.

Although TBCF performs consistently better than pure col-
laborative filtering, the difference in performance is not very
large. For the future work, we could further improve the cal-
culation of the semantic distance among new tags that are
not stored in WordNet yet, and we could use the community
wisdom in social network analysis to improve the neighbor
searching as well.

ACKNOWLEDGMENTS
We thank Rich Thompson for his generous help and the valu-
able comments greatly.

REFERENCES
1. M. Balabanović and Y. Shoham. Fab: content-based,

collaborative recommendation. Commun. ACM,
40(3):66–72, 1997.

2. S. Banerjee and T. Pedersen. An adapted lesk algorithm
for word sense disambiguation using wordnet. In
CICLing ’02: Proceedings of the Third International
Conference on Computational Linguistics and
Intelligent Text Processing, pages 136–145, London,
UK, 2002. Springer-Verlag.

3. D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In Proc. 15th International Conf. on
Machine Learning, pages 46–54. Morgan Kaufmann,
San Francisco, CA, 1998.

4. J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. pages 43–52, 1998.

5. J. Delgado. Memory-based weightedmajority
prediction for recommender systems, 1999.

6. D. M. P. Dmitry Y. Pavlov. A maximum entropy
approach to collaborative filtering in dynamic, sparse,
high-dimensional domains. In Conference on Neural
Information Processing Systems, 2002.

7. W. Hill, L. Stead, M. Rosenstein, and G. Furnas.
Recommending and evaluating choices in a virtual
community of use. In CHI ’95: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 194–201, New York, NY, USA, 1995.
ACM Press/Addison-Wesley Publishing Co.

8. T. Hofmann. Collaborative filtering via gaussian
probabilistic latent semantic analysis. In SIGIR ’03:
Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 259–266, New York, NY,
USA, 2003. ACM Press.

9. W. Kraaij and R. Pohlmann. Porter’s stemming
algorithm for dutch, 1994.

10. V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Technical Report 8,
1966.

11. A. Nakamura and N. Abe. Collaborative filtering using
weighted majority prediction algorithms. In ICML ’98:
Proceedings of the Fifteenth International Conference
on Machine Learning, pages 395–403, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

12. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for
collaborative filtering of netnews. In CSCW ’94:
Proceedings of the 1994 ACM conference on Computer
supported cooperative work, pages 175–186, New
York, NY, USA, 1994. ACM Press.

13. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In World Wide Web, pages 285–295, 2001.

14. G. Shani, D. Heckerman, and R. I. Brafman. An
mdp-based recommender system. J. Mach. Learn. Res.,
6:1265–1295, 2005.

15. U. Shardanand and P. Maes. Social information
filtering: Algorithms for automating word of mouth. In
Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, volume 1, pages
210–217, 1995.

16. S. Sood, S. Owsley, K. Hammond, and L. Birnbaum.
Tagassist: Automatic tag suggestion for blog posts.
March 2007.

17. L. Ungar and D. Foster. Clustering methods for
collaborative filtering. In Proceedings of the Workshop
on Recommendation Systems. AAAI Press, Menlo Park
California, 1998.

18. J. Wang, A. P. de Vries, and M. J. Reinders. A
user-item relevance model for log-based collaborative
filtering. In Proc. of European Conference on
Information Retrieval (ECIR 2006), London, UK, 2006.

8

