SCALABLE INFLUENCE ESTIMATION IN CONTINUOUS-TIME DIFFUSION NETWORKS
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MOTIVATION

» Question : How can we optimize the selection of the earlier nodes to
trigger, within a time window T, the largest expected number of
follow-ups 7

time-sensitive viral marketing
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CONTINUOUS-TIME INDEPENDENT CASCADE MODEL

» Infection : an event occurs to a
node, e.g., adopting a product. )
» Pairwise conditional density oy
fi(t]6) = fi(t; — 1) over time '
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ABSOLUTE INFECTION TIME PERSPECTIVE

» For each node I/, let random variable t; represent the infection time.
» The influence value of sources A by time T is

o(AT)=E > I{t<T}H =" Pr{t<T}.

» Directed graphical model representation

p({titiev) =

» Marginalization

P (til{t}jexr,) , miis the set of parents.

INTER-EVENT TIME PERSPECTIVE

~ Aim to calculate E |, I{t; < T}| directly.
» Mutually independent transmission times 7; = f; — {;.

p ({7itgiee) = H( e i)
» A set of transmission times (or a particular configuration).

G = {Tji}(iee ~ P ({Titginee)
» Given @, t; is the length of shortest path from all sources in A to /.
» Draw a set of G' «~ p ({7i}j.ijee)

Pr{t < T} = Pr{length of shortest path from A — i< T}.

» Naive simulation requires O(|V|?) time complexity.
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NEIGHBORHOOD SIZE ESTIMATION

iven n i.i.d random variable X' -~ e %, the minimum X, «~ ne~"*.
G d d ble X' X th X nx

find the minimum label 7.

» Find m such least labels, {r/}" , to estimate
N({j}. T)| = &, convert counting problem to estimation problem |
u=1

*

NEIGHBORHOOD SIZE ESTIMATION

» Multiple sources A
NAT) =] _,N(s T).

» Reuse least-label list for each
single source s € A

assign exponential random label r;

Fe = MiNje g MINjer(iT) /]
» Cohen’s algorithm produces the
lists for all nodes in time O(|£]).

OVERALL ALGORITHM CONTINEST

Influence function

(A, T) =Erryiee IN(A T = EgnEya L rmymn

minimum of the two least labels

m-—1
>oua ]
H(j,i)eé’ hi(7ii)
2. Given {7;})ce, sample m random labels {r}icy ~ [];c, exp(—r).

3. Estimate o(A, T) by 6(A, T) =+ > (m—1)/ >0 1)

OVERALL ALGORITHM CONTINEST

Theorem : Draw the following number of sets of random transmission times

CA. (2V
n=-7log (T) ,

where A depends on A and T, and for each set of random transmission times, draw
m sets of random labels. Then |6(A, T) — o(A, T)| < € uniformly for all A with
Al < C, with probability at least 1 — §.

» Influence of larger source set A at the longer time window T requires more samples
in the worst case.

» In practice : small m = 5 achieves good performance.

1. Sample n sets of random transmission times {7 }(j jce ~

INFLUENCE MAXIMIZATION CONTINEST

» Solve A* = argmax ¢ o(A, T), which is NP-hard in general.
»o(A, T) is a non-negative, monotonic, submodular function.

» Greedy algorithm achieves (1 — 1/e) of the optimal value (OPT).
» The estimator (A, T) induces some error e.

» Theorem : Suppose the influence o(A, T) for all A with | 4] < C are estimated
uniformly with error ¢ and confidence 1 — 9, the greedy algorithm returns a set of
sources A such that a(ﬁ, T >(1—1/e)OPT — 2Ce with probability at least 1 — ¢.
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EXPERIMENTAL EVALUATION : SYNTHETIC DATASET

» Accuracy of the estimated influence (highest out-degree node).
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» Quality of the selected nodes for influence maximization.
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» Scalability of influence maximization.
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» 10,967 hyperlink cascades randomly splits into 80%-training and
20%-testing data.

» Infer network structures based on the training data.

» Evaluate estimated influence on the testing data.
» Given node /, C(/) be the set of all cascades where / is the source.

» Based on C(/), the total number of distinct nodes infected before T
guantifies the real influence of node u up to time T.

» Average across different cascades is the true influence.

» Repeat experiments for 10 times.
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