MOTIVATION

► Question: How can we optimize the selection of the earlier nodes to trigger, within a time window T, the largest expected number of follow-ups?

time-sensitive viral marketing

CONTINUOUS-TIME INDEPENDENT CASCADE MODEL

► Infection: an event occurs to a node, e.g., adopting a product.

Pairwise conditional density $f_{ji}(t_j|t_i) = f_{ji}(t_i - t_i)$ over time

ABSOLUTE INFECTION TIME PERSPECTIVE

- ▶ For each node i, let random variable t_i represent the infection time.
- ▶ The influence value of sources A by time T is

$$\sigma(\mathcal{A}, T) = \mathbb{E}\left[\sum_{i \in \mathcal{V}} \mathbb{I}\left\{t_i \leq T\right\}\right] = \sum_{i \in \mathcal{V}} \Pr\left\{t_i \leq T\right\}.$$

Directed graphical model representation

$$p(\lbrace t_i \rbrace_{i \in \mathcal{V}}) = \prod_{j \in \mathcal{V}} p(t_i | \lbrace t_j \rbrace_{j \in \pi_i}), \ \pi_i \text{ is the set of parents.}$$

Marginalization

$$\Pr\{t_i \leq T\} = \int_0^\infty \cdots \int_{t_i=0}^T \cdots \int_0^\infty \left(\prod_{j \in \mathcal{V}} p\left(t_j | \{t_l\}_{l \in \pi_j}\right)\right) \left(\prod_{j \in \mathcal{V}} dt_j\right).$$

INTER-EVENT TIME PERSPECTIVE

- ▶ Aim to calculate $\mathbb{E}\left[\sum_{i\in\mathcal{V}}\mathbb{I}\left\{t_i\leq T\right\}\right]$ directly.
- ▶ Mutually independent transmission times $\tau_{ji} = t_i t_j$.

$$p\left(\{ au_{ji}\}_{(j,i)\in\mathcal{E}}\right)=\prod_{(j,i)\in\mathcal{E}}f_{ji}(au_{ji}).$$

A set of transmission times (or a particular configuration).

$$oldsymbol{G} := \{ au_{ji}\}_{(j,i)\in\mathcal{E}} \backsim oldsymbol{p}\left(\{ au_{ji}\}_{(j,i)\in\mathcal{E}}
ight).$$

- ▶ Given G, t_i is the length of shortest path from all sources in A to i.
- ▶ Draw a set of $G^{\ell} \backsim p\left(\{\tau_{ji}\}_{(j,i)\in\mathcal{E}}\right)$

 $\Pr\{t_i \leq T\} = \Pr\{\text{length of shortest path from } A \rightarrow i \leq T\}$.

▶ Naive simulation requires $O(|\mathcal{V}|^2)$ time complexity.

NEIGHBORHOOD SIZE ESTIMATION

Given *n* i.i.d random variable $X^i \sim e^{-x}$, the minimum $X_* \sim ne^{-nx}$.

assign exponential random label

find the minimum label r_{st}

► Find m such least labels, $\{r_*^u\}_{u=1}^m$ to estimate $|\mathcal{N}(\{j\}, T)| \approx \frac{m-1}{\sum_{u=1}^m r_*^u}$, convert counting problem to estimation problem!

NEIGHBORHOOD SIZE ESTIMATION

► Multiple sources A

$$\mathcal{N}(\mathcal{A}, T) = \bigcup_{s \in \mathcal{A}} \mathcal{N}(s, T).$$

Reuse least-label list for each single source $s \in A$

Cohen's algorithm produces the lists for all nodes in time $\tilde{O}(|\mathcal{E}|)$.

OVERALL ALGORITHM CONTINEST

Influence function

$$\sigma(\mathcal{A}, T) = \mathbb{E}_{\{\tau_{ji}\}_{(j,i)\in\mathcal{E}}}\left[|\mathcal{N}(\mathcal{A}, T)|\right] = \mathbb{E}_{\{\tau_{ji}\}}\mathbb{E}_{\{r^1,...,r^m\}|\{\tau_{ji}\}}\left[\frac{m-1}{\sum_{u=1}^m r_*^u}\right].$$

- 1. Sample n sets of random transmission times $\{ au'_{ij}\}_{(j,i)\in\mathcal{E}} \sim \prod_{(j,i)\in\mathcal{E}} f_{ji}(au_{ji})$
- 2. Given $\{\tau_{ij}^l\}_{(j,i)\in\mathcal{E}}$, sample m random labels $\{r_i^u\}_{i\in\mathcal{V}} \sim \prod_{i\in\mathcal{V}} \exp(-r_i)$.
- 3. Estimate $\sigma(\mathcal{A}, T)$ by $\hat{\sigma}(\mathcal{A}, T) \approx \frac{1}{n} \sum_{l=1}^{n} \left((m-1) / \sum_{u_l=1}^{m} r_*^{u_l} \right)$.

OVERALL ALGORITHM CONTINEST

Theorem: Draw the following number of sets of random transmission times $C\Lambda$. $(2|\mathcal{V}|)$

$$n \geqslant \frac{C\Lambda}{\epsilon^2} \log \left(\frac{2|\mathcal{V}|}{\delta} \right),$$

where Λ depends on \mathcal{A} and T, and for each set of random transmission times, draw m sets of random labels. Then $|\widehat{\sigma}(\mathcal{A}, T) - \sigma(\mathcal{A}, T)| \leq \epsilon$ uniformly for all \mathcal{A} with $|\mathcal{A}| \leq C$, with probability at least $1 - \delta$.

- ▶ Influence of larger source set A at the longer time window T requires more samples in the worst case.
- ▶ In practice : small m = 5 achieves good performance.

INFLUENCE MAXIMIZATION CONTINEST

- ▶ Solve $A^* = \operatorname{argmax}_{|A| \leq C} \sigma(A, T)$, which is NP-hard in general.
- $\triangleright \sigma(A, T)$ is a non-negative, monotonic, submodular function.
- ▶ Greedy algorithm achieves (1 1/e) of the optimal value (OPT).
- ▶ The estimator $\hat{\sigma}(A, T)$ induces some error ϵ .
- ► **Theorem**: Suppose the influence $\sigma(A, T)$ for all A with $|A| \leq C$ are estimated uniformly with error ϵ and confidence 1δ , the greedy algorithm returns a set of sources \widehat{A} such that $\sigma(\widehat{A}, T) \geq (1 1/e)OPT 2C\epsilon$ with probability at least 1δ .

EXPERIMENTAL EVALUATION: SYNTHETIC DATASET

► Accuracy of the estimated influence (highest out-degree node).

Quality of the selected nodes for influence maximization.

Scalability of influence maximization.

EXPERIMENTAL EVALUATION: REAL DATASET

- ▶ 10,967 hyperlink cascades randomly splits into 80%-training and 20%-testing data.
- ▶ Infer network structures based on the training data.
- ► Evaluate estimated influence on the testing data.
- ▶ Given node i, C(i) be the set of all cascades where i is the source.
- ▶ Based on C(i), the total number of distinct nodes infected before T quantifies the real influence of node u up to time T.
- Average across different cascades is the true influence.
- Repeat experiments for 10 times.