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MOTIVATION

@ Question : If a new piece of information is released in a few nodes,
can it spread, in 1 month, to a million nodes ?

@ Question : How can we optimize the selection of the earlier nodes to
trigger, within a time window T, the largest expected number of
follow-ups 7

time-sensitive viral marketing

S
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OUTLINE

1 Continuous-time diffusion process.
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OUTLINE

1 Continuous-time diffusion process.

2 Efficient influence estimation and maximization.

influence estimation influence maximization

3 Experimental evaluation with synthetic and true data.
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CONTINUOUS VS. DISCRETE TIME DIFFUSION MODEL

e Traditionally, diffusion has been modeled as discrete steps (or rounds).
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CONTINUOUS VS. DISCRETE TIME DIFFUSION MODEL

e Traditionally, diffusion has been modeled as discrete steps (or rounds).
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@ However, real time is continuous.
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@ —— () heterogeneous diffusion pattern

e how long is each round 7
e how to aggregate events within one round ?
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CONTINUOUS-TIME INDEPENDENT CASCADE MODEL

o Node set V : people, media-sites, organizations, etc.

Edge set £ : relations, channels, etc.

Infection : an event occurs to a node, e.g., adopting a product.

e Pairwise conditional density over time

fii(4j[t:) = fi(ti — 1)
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CONTINUOUS-TIME INDEPENDENT CASCADE MODEL

node 0 is the source A = {0}.

node 0 influences out-going
neighbors with f(At).

node 1 is infected at t; = 0.1.

both node 0 and 1 influence
node 2.

0.4 <0.5.
node 3 is infected at 0.7 by
node 1. 0
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NODE’S PERSPECTIVE

@ For each node i, let random variable t; represent the infection time.
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NODE’S PERSPECTIVE

@ For each node i, let random variable t; represent the infection time.

@ The influence value of sources A by time T is

oA T)=E {Z/evﬂ{t" - T}} - Z,-ev Priti < T}

influence estimation
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NODE’S PERSPECTIVE

@ Directed graphical model representation

p({ti}iev) = Hiev p(ti|{tj}jex;), i is the set of parents
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NODE’S PERSPECTIVE

@ Directed graphical model representation

p({ti}iev) = Hiev p(ti|{tj}jex;), i is the set of parents

e Marginalization

Priti< T} = /0Oo - /t, / JEV t ‘{t’}’E’TJ)) (Hjev dtj)
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NODE’S PERSPECTIVE

@ Directed graphical model representation

p({ti}iev) = Hiev p(ti|{tj}jex;), i is the set of parents

e Marginalization

iz [T [ [ (I o) (I, )

e Need to integrate all possible configurations of cascades where t; < T.

e No closed form solution for general heterogeneous transmission
function.

e Hard to approximate.
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EDGE’S PERSPEC

e Mutually independent transmission times 7j; = t; — t;
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EDGE’S PERSPECTIVE

e Mutually independent transmission times 7j; = t; — t;

@ A network with stochastic edge weights (inter-infection time)

shortest path property
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EDGE’S PERSPECTIVE

e Mutually independent transmission times 7j; = t; — t;

@ A network with stochastic edge weights (inter-infection time)

shortest path property

@ t3 equals to the length of the shortest path from tg.
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NODE’S VS. EDGE’S PERSPECTIVE

e Node's perspective

o(A, T)=> icyPr{ti< T}
) T [e%S)
Prit; < T} = fo e 'ft,-:o T fo (Hjev p (tj|{t/}le7rj)) (Hjev dtj)
e Edge's perspective

o(A, T) =Eg [Yep I{ti < T}]
G [iee fii(Ti)
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NAIVE SIMULATION

e Given G, t; is the length of the shortest path.

@ Check whether t; < T on many samples.
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NAIVE SIMULATION

e Given G, t; is the length of the shortest path.

@ Check whether t; < T on many samples.
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NAIVE SIMULATION

e Given G, t; is the length of the shortest path.

@ Check whether t; < T on many samples.

l flan
At

o]
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\/H(tdgT \/H(tng x]ltf <T)

@ Average the counts across n samples.
(-A T) (Z,evﬂ{tl < T|Gl}+ ,‘f'ZieVH{ti < T|Gn})
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NAIVE SIMULATION

@ Using shortest path is not scalable.
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NAIVE SIMULATION

@ Using shortest path is not scalable.

@ Influence Estimation of a single source j

o a({j},T)

e Compute all shortest paths from j to the other nodes.
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NAIVE SIMULATION

Using shortest path is not scalable.

Influence Estimation of a single source j

o a({j},T)

e Compute all shortest paths from j to the other nodes.

@ Which source is the best ?

o Chose j with the largest o({j}, T)
o Trysource j =0,...,|V| -1, O(|V|?)

Quadratic in network size
Can not deal with large networks !
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NEIGHBORHOOD SIZE ESTIMATION

@ Given a sampled network G and source node j, estimate

IN({j}, T)| = |{i: t; < T}| the size of neighborhood within
distance T.

influence estimation
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NEIGHBORHOOD SIZE ESTIMATION

Key Fact

Given a set of n i.i.d random variable X' «~ e=*, the minimum X,. -~ ne~"™.
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NEIGHBORHOOD SIZE ESTIMATION

Key Fact

Given a set of n i.i.d random variable X' «~ e=*, the minimum X,. -~ ne~"™.

assign exponential random label 7; find the minimum label 7.
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NEIGHBORHOOD SIZE ESTIMATION

KEY Fact
Given a set of n i.i.d random variable X' « e, the minimum X, — ne™

nx

assign exponential random label 7; find the minimum label 7.

e Find m such least labels, {r{}T_; to estimate

N({j}, T)| = Z’Z’flru, convert counting problem to estimation
u=1 "%

problem !

CoNTINEST

N. Du, L. SoNG, M. RODRIGUEZ, H. ZHA



SINGLE SOURCE

@ Each node holds a least-label list
0 0.8/ MM
o.wﬁh <

19 1.9 19 19
(distance 0, label 2.1) (distance 0.1, label 1.9)  (distance 0.4, label 1.5) (distance 0.7, label 1.1)

Node O’s least-label list

o (Cohen 97) gives the smart algorithm to calculate the least-label list
for each node in O(|€]).

e Estimator |N({j},T)| = Z’L’qi_lru is unbiased with variance O(-15).
u=1"*

m—2

e Sample m < min (|V|,|€|) to select the single best source linearly in
network size !
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MULTIPLE SOURCES

@ Multiple sources A

NAT) = (NG T

S

@ Reuse least-label list for each single source s € A

fx = Minjc 4 minjeN(,-’T) r

minimum of the two least labels
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OVERALL ALGORITHM CONTINEST

1. Sample n sets of random transmission times

§ > {ritiinee ~ Tgiee i)
nsamplesgéa"ﬂdﬁo y € (,)e€& yi\ly
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OVERALL ALGORITHM CONTINEST

1. Sample n sets of random transmission times

§ > {ritiinee ~ Tgiee i)
nsamplesgéa"ﬂdﬁo y € (,)e€& yi\ly

2. Given a set of {T,-j-}(j,,‘)eg, sample m sets of random labels

{ri'tiev ~ Tlieyexp(=ri)

assign exponential random label 7: find the minimurn label 7.
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OVERALL ALGORITHM CONTINEST

1. Sample n sets of random transmission times

§ > {ritiinee ~ Tgiee i)
nsamplesgéa"ﬂdﬁo y € (,)e€& yi\ly

2. Given a set of {T,-j-}(j,,‘)eg, sample m sets of random labels

{ri'tiev ~ Tlieyexp(=ri)

3. Estimate o(A, T) by sample averages

AT~ 350, (= 1)/ 20 )
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OVERALL ALGORITHM CONTINEST

THEOREM

Draw the following number of samples for the set of random transmission times

CA 21V
nz -z e (5) ,

where \ depends on A and T, and for each set of random transmission times,

draw m set of random labels. Then |6(A, T) — o(A, T)| < € uniformly for all A
with |A| < C, with probability at least 1 — 4.
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THEOREM

Draw the following number of samples for the set of random transmission times

CA 21V
nz -z e (5) :

where \ depends on A and T, and for each set of random transmission times,

draw m set of random labels. Then |6(A, T) — o(A, T)| < € uniformly for all A
with |A| < C, with probability at least 1 — 4.

@ Implications : influence of larger source set A at the longer time
window T requires more samples in the worst case.
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OVERALL ALGORITHM CONTINEST

THEOREM
Draw the following number of samples for the set of random transmission times

CA 21V
nz -z e (5) :

where \ depends on A and T, and for each set of random transmission times,
draw m set of random labels. Then |6(A, T) — o(A, T)| < € uniformly for all A
with |A| < C, with probability at least 1 — 4.

@ Implications : influence of larger source set A at the longer time
window T requires more samples in the worst case.

@ In practice : small m =5 achieves good performance. Inaccuracy is
canceled out due to large outer-loop n samples.
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INFLUENCE MAXIMIZATION

e We seek to solve
A* = argmax| 4 <c 0(A, T)

which is NP-hard in general.
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INFLUENCE MAXIMIZATION

e We seek to solve

A* = argmax| 4 <c 0(A, T)

which is NP-hard in general.
e o(A, T) is a non-negative, monotonic, submodular function.

e Greedy algorithm achieves at least a fraction (1 — 1/e) of the optimal
value (OPT)
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INFLUENCE MAXIMIZATION

e We seek to solve
A* = argmax| 4 <c 0(A, T)

which is NP-hard in general.
e o(A, T) is a non-negative, monotonic, submodular function.

o Greedy algorithm achieves at least a fraction (1 — 1/e) of the optimal
value (OPT)

THEOREM

Suppose the influence o(A, T) for all A with |A| < C are estimated uniformly

with error € and confidence 1 — 6, the greedy algorithm returns a set of sources A
such that (A, T) > (1 —1/e)OPT — 2Ce with probability at least 1 — 0.
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EXPERIMENTAL EVALUATION

@ Synthetic dataset

e Generate network structure.

Weibull pairwise transmission function with randomly chosen
parameters.

Accuracy of estimated influence (compared to simulation).
Quality of selected sources.

Scalability.
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EXPERIMENTAL EVALUATION

@ Synthetic dataset

e Generate network structure.

Weibull pairwise transmission function with randomly chosen
parameters.

Accuracy of estimated influence (compared to simulation).
Quality of selected sources.

Scalability.

@ Real dataset

MemeTracker data (172m news articles 08/2009-09/2009).
Infer network structures from hyperlink cascade data.

Accuracy of estimated influence (compared to real value).
Quality of selected sources on real data.
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SYNTHETIC DATASET

Accuracy of the estimated influence (highest out-degree node)

-3
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(a) Influence vs. time (b) Error vs. #samples (c) Error vs. #labels

e 100,000 samples for naive simulation (NS).
o m(#lables) << n(#samples) still achieves good accuracy.

@ accuracy does not depend on network structure (1024 nodes, 2048
edges).

N. Du, L. SoNG, M. RODRIGUEZ, H. ZHA CoNTINEST



SYNTHETIC DATASET

Accuracy of the estimated influence (highest out-degree node)
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e CONTINEST is close to INFLUMAX (sparse small networks,
exponential transmission functions).

@ accuracy does not depend on network structure (128 nodes, 141
edges).
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SYNTHETIC DATASET

Quality of the selected nodes for influence maximization
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e CONTINEST typically outperforms competitive methods by 20%.

e Performance does not depend on network structure (1024 nodes,
2048 edges).
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SYNTHETIC DATASET

Scalability of influence maximization
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Small network Small network Up to one million nodes

@ Small network : 128 nodes.
o Large network : up to 1 million nodes, with density 1.5.

@ Our algorithm : sample 10K networks, 5 random labels.
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REAL DATASET

10,967 hyperlink cascades.

@ Use 80% cascades for learning continuous-time diffusion model.

Select sources based on the learnt model.

Evaluate influence of the sources using 20% test cascades.

Compared to discrete-time diffusion models and scalable heuristics.
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REAL DATASET
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o CONTINEST achieves the lowest MAE error.

(c) time




REAL DATASET
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o CONTINEST achieves the lowest MAE error.

o CONTINEST produces the set of sources with the largest true
influence within short time window.
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CONCLUSION

@ a novel view of the influence estimation problem in continuous-time
diffusion networks.
e very little assumptions about transmission functions.
e only depends on temporal cascades induced by diffusion.
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CONCLUSION

@ a novel view of the influence estimation problem in continuous-time
diffusion networks.
e very little assumptions about transmission functions.
e only depends on temporal cascades induced by diffusion.
@ an efficient randomized algorithm improving :
e the accuracy of the estimated influence ( the lowest MAE in real data ).
o the quality of selected sources ( the largest influence within short time
period).
o the scalability ( scaling up to millions of nodes in practice).

N. Du, L. SoNG, M. RODRIGUEZ, H. ZHA



CONCLUSION

@ a novel view of the influence estimation problem in continuous-time
diffusion networks.
e very little assumptions about transmission functions.
e only depends on temporal cascades induced by diffusion.
@ an efficient randomized algorithm improving :
e the accuracy of the estimated influence ( the lowest MAE in real data ).
o the quality of selected sources ( the largest influence within short time
period).
o the scalability ( scaling up to millions of nodes in practice).
@ natural follow-up : product / advertisement allocation with more
realistic constraints.
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