|  | 
|  | Poisson (const unsigned &n, const unsigned &num_dims) | 
|  | The constructor.  More... 
 | 
|  | 
| virtual void | NegLoglikelihood (double &objvalue, Eigen::VectorXd &Gradient) | 
|  | Negative loglikelihood of homogeneous Poisson process.  More... 
 | 
|  | 
| virtual double | Intensity (const double &t, const Sequence &data, Eigen::VectorXd &intensity_dim) | 
|  | The intensity of each dimension for a homogeneous Poisson process is a constant \(\lambda^0_n\).  More... 
 | 
|  | 
| virtual double | IntensityUpperBound (const double &t, const double &L, const Sequence &data, Eigen::VectorXd &intensity_upper_dim) | 
|  | Returns the upper bound of the summation of the intensity value on each dimension from time t to t + L given the history of past events in sequence data. Let \({\lambda_d^*(t)}\) be the conditional intensity function on the d-th dimension where \(d=1\dotso D\), and num_dims_ = D. This function returns 
\begin{align} \lambda_0^D(t) \geq \sum_{d=1}^D\sup_{\tau\in[t, t + \tau(t)]}\lambda^*_d(\tau), \end{align}
  where the returned value \(\lambda_0^D(t)\) will be used for Ogata's Thinning algorithm.  More...
 | 
|  | 
| virtual double | IntensityIntegral (const double &lower, const double &upper, const Sequence &data) | 
|  | Returns the integral of the intensity function \(\int_{a}^b\lambda^*(\tau)d\tau\) where \(a = lower\) and \(b = upper\).  More... 
 | 
|  | 
| virtual void | Gradient (const unsigned &k, Eigen::VectorXd &gradient) | 
|  | Returns the gradient w.r.t. the model parameters on the k-th sequence.  More... 
 | 
|  | 
| virtual double | PredictNextEventTime (const Sequence &data, const unsigned &num_simulations) | 
|  | Predict the next event timing by the expectation \(\int_{t_n}^\infty tf^*(t)dt\). Currently, we use the sample average by simulations to approximate the expectation since the conditional density \(f^*(t)\) normally does not have an analytic form.  More... 
 | 
|  | 
| void | fit (const std::vector< Sequence > &data) | 
|  | Maximum likelihood estimation for the model parameters.  More... 
 | 
|  | 
|  | IProcess (const unsigned &n, const unsigned &num_dims) | 
|  | The constructor.  More... 
 | 
|  | 
| const Eigen::VectorXd & | GetParameters () | 
|  | Return the column vector of model parameters.  More... 
 | 
|  | 
| unsigned | GetNumDims () | 
|  | Return the number of dimensions in the process.  More... 
 | 
|  | 
| void | SetParameters (const Eigen::VectorXd &v) | 
|  | Set the model parameters.  More... 
 | 
|  | 
| void | PlotIntensityFunction (const Sequence &data) | 
|  | Plots the intensity functions based on the given sequence. It plots the intensity function and the associated event points up of each dimension in the same figure.  More... 
 | 
|  | 
| void | PlotIntensityFunction (const Sequence &data, const unsigned &dim_id) | 
|  | Plots the intensity function and the associated event points of the dimension dim_id.  More... 
 | 
|  | 
Poisson implements the multivariate homogeneous process. 
Definition at line 17 of file Poisson.h.
  
  | 
        
          | double Poisson::IntensityUpperBound | ( | const double & | t, |  
          |  |  | const double & | L, |  
          |  |  | const Sequence & | data, |  
          |  |  | Eigen::VectorXd & | intensity_upper_dim |  
          |  | ) |  |  |  | virtual | 
 
Returns the upper bound of the summation of the intensity value on each dimension from time t to t + L given the history of past events in sequence data. Let \({\lambda_d^*(t)}\) be the conditional intensity function on the d-th dimension where \(d=1\dotso D\), and num_dims_ = D. This function returns 
\begin{align} \lambda_0^D(t) \geq \sum_{d=1}^D\sup_{\tau\in[t, t + \tau(t)]}\lambda^*_d(\tau), \end{align}
 where the returned value \(\lambda_0^D(t)\) will be used for Ogata's Thinning algorithm. 
- Parameters
- 
  
    | t | the starting time. |  | L | the duration. |  | data | the given sequence of the past events until time t. |  | intensity_upper_dim | a column vector of size num_dims_ storing the upper bound of the intensity function on each dimension from time t to t + L. |  
 
- Returns
- the summation of the upper-bound of each intensity function from the respetive dimension within the interval [t, t + L]. 
Implements IProcess.
Definition at line 19 of file Poisson.cc.