Multivariate Point Process Package  0.1
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12]
 CConTinEstConTinEst implements the scalable influence estimation algorithm
 CDiagnosisDiagnosis implements the basic residual analysis for a given general point process
 CEventEvent contains simple attributes of an event point
 CGraphGraph represents a given diffusion network structure
 CIProcessIProcess defines a general interface for each specific point process
 CHawkesGeneralKernelHawkesGeneralKernel implements the multivariate Hawkes process with customized triggering kernels
 CHawkesLearningTriggeringKernelHawkesLearningTriggeringKernel implements the multivariate Hawkes process where the triggering kernel can be learned from the data
 CLowRankHawkesProcessLowRankHawkesProcess implements the standard multivariate Hawkes process
 CPlainHawkesPlainHawkes implements the standard multivariate Hawkes process
 CPlainTerminatingPlainTerminating implements the multivariate terminating process
 CPoissonPoisson implements the multivariate homogeneous process
 CSelfInhibitingProcessSelfInhibitingProcess implements the standard multivariate Self-inhibiting (or self-correcting) process
 CTerminatingProcessLearningTriggeringKernelTerminatingProcessLearningTriggeringKernel implements the multivariate terminating process where the pairwise infection risk function can be learned from the data
 CGraph::NodeDefines a single node object
 COptimizerOptimizer encapsulates a collection of optimization algorithms used in the toolbox
 CPlainHawkes::OPTIONOptions used to configure the fitting of the standard Hawkes Process
 CTerminatingProcessLearningTriggeringKernel::OPTIONOptions used to configure the fitting of the general Hawkes Process with learned triggering kernels
 CPlainTerminating::OPTIONOptions used to configure the fitting of the terminating point process
 CHawkesGeneralKernel::OPTIONOptions used to configure the fitting of the general Hawkes Process with customized triggering kernels
 CHawkesLearningTriggeringKernel::OPTIONOptions used to configure the fitting of the general Hawkes Process with learned triggering kernels
 CSelfInhibitingProcess::OPTIONOptions used to configure the fitting of the terminating point process
 CLowRankHawkesProcess::OPTIONOptions used to configure the fitting of the Low-rank Hawkes process
 CGraph::ParameterThe parameter of the pairwise Weibull distribution for the respective diffusion time
 CPlotPlot is a wrapper of the GNU plot
 CSequenceSequence encapsulates the operations on a sequence of events
 CSimpleRNGA simple C++ random number generator from John D. Cook
 CSimulatorSimulator defines a general simulator for point processes
 COgataThinningThis class implements the general Simulator based on Ogata's Thinning algorithm
 CTriggeringKernelTriggeringKernel defines a general triggering kernel object of Hawkes process
 CExpKernelThe Exponential triggering kernel
 CPowerlawKernelThe Power-Law triggering kernel
 CRayleighKernelThe Rayleigh triggering kernel
 CSineKernelThe Sine triggering kernel